Results 1 - 10
of
281
Partial Constraint Satisfaction
, 1992
"... . A constraint satisfaction problem involves finding values for variables subject to constraints on which combinations of values are allowed. In some cases it may be impossible or impractical to solve these problems completely. We may seek to partially solve the problem, in particular by satisfying ..."
Abstract
-
Cited by 471 (21 self)
- Add to MetaCart
. A constraint satisfaction problem involves finding values for variables subject to constraints on which combinations of values are allowed. In some cases it may be impossible or impractical to solve these problems completely. We may seek to partially solve the problem, in particular by satisfying a maximal number of constraints. Standard backtracking and local consistency techniques for solving constraint satisfaction problems can be adapted to cope with, and take advantage of, the differences between partial and complete constraint satisfaction. Extensive experimentation on maximal satisfaction problems illuminates the relative and absolute effectiveness of these methods. A general model of partial constraint satisfaction is proposed. 1 Introduction Constraint satisfaction involves finding values for problem variables subject to constraints on acceptable combinations of values. Constraint satisfaction has wide application in artificial intelligence, in areas ranging from temporal r...
Algorithms for Constraint-Satisfaction Problems: A Survey
, 1992
"... A large number of problems in AI and other areas of computer science can be viewed as special cases of the constraint-satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, the planning of genetic experiments, an ..."
Abstract
-
Cited by 449 (0 self)
- Add to MetaCart
(Show Context)
A large number of problems in AI and other areas of computer science can be viewed as special cases of the constraint-satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, the planning of genetic experiments, and the satisfiability problem. A number of different approaches have been developed for solving these problems. Some of them use constraint propagation to simplify the original problem. Others use backtracking to directly search for possible solutions. Some are a combination of these two techniques. This article overviews many of these approaches in a tutorial fashion.
Hybrid Algorithms for the Constraint Satisfaction Problem
- Computational Intelligence
, 1993
"... problem (csp), namely, naive backtracking (BT), backjumping (BJ), conflict-directed backjumping ..."
Abstract
-
Cited by 380 (8 self)
- Add to MetaCart
problem (csp), namely, naive backtracking (BT), backjumping (BJ), conflict-directed backjumping
Bucket Elimination: A Unifying Framework for Reasoning
"... Bucket elimination is an algorithmic framework that generalizes dynamic programming to accommodate many problem-solving and reasoning tasks. Algorithms such as directional-resolution for propositional satisfiability, adaptive-consistency for constraint satisfaction, Fourier and Gaussian elimination ..."
Abstract
-
Cited by 298 (58 self)
- Add to MetaCart
(Show Context)
Bucket elimination is an algorithmic framework that generalizes dynamic programming to accommodate many problem-solving and reasoning tasks. Algorithms such as directional-resolution for propositional satisfiability, adaptive-consistency for constraint satisfaction, Fourier and Gaussian elimination for solving linear equalities and inequalities, and dynamic programming for combinatorial optimization, can all be accommodated within the bucket elimination framework. Many probabilistic inference tasks can likewise be expressed as bucket-elimination algorithms. These include: belief updating, finding the most probable explanation, and expected utility maximization. These algorithms share the same performance guarantees; all are time and space exponential in the inducedwidth of the problem's interaction graph. While elimination strategies have extensive demands on memory, a contrasting class of algorithms called "conditioning search" require only linear space. Algorithms in this class split a problem into subproblems by instantiating a subset of variables, called a conditioning set, or a cutset. Typical examples of conditioning search algorithms are: backtracking (in constraint satisfaction), and branch and bound (for combinatorial optimization). The paper presents the bucket-elimination framework as a unifying theme across probabilistic and deterministic reasoning tasks and show how conditioning search can be augmented to systematically trade space for time.
Improvements To Propositional Satisfiability Search Algorithms
, 1995
"... ... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400-variable 3-SAT problems in about 2 hours on the average. In general, it can solve hard n-variable ..."
Abstract
-
Cited by 174 (0 self)
- Add to MetaCart
... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400-variable 3-SAT problems in about 2 hours on the average. In general, it can solve hard n-variable random 3-SAT problems with search trees of size O(2 n=18:7 ). In addition to justifying these claims, this dissertation describes the most significant achievements of other researchers in this area, and discusses all of the widely known general techniques for speeding up SAT search algorithms. It should be useful to anyone interested in NP-complete problems or combinatorial optimization in general, and it should be particularly useful to researchers in either Artificial Intelligence or Operations Research.
Propositional Semantics for Disjunctive Logic Programs
- Annals of Mathematics and Artificial Intelligence
, 1994
"... In this paper we study the properties of the class of head-cycle-free extended disjunctive logic programs (HEDLPs), which includes, as a special case, all nondisjunctive extended logic programs. We show that any propositional HEDLP can be mapped in polynomial time into a propositional theory such th ..."
Abstract
-
Cited by 161 (2 self)
- Add to MetaCart
(Show Context)
In this paper we study the properties of the class of head-cycle-free extended disjunctive logic programs (HEDLPs), which includes, as a special case, all nondisjunctive extended logic programs. We show that any propositional HEDLP can be mapped in polynomial time into a propositional theory such that each model of the latter corresponds to an answer set, as defined by stable model semantics, of the former. Using this mapping, we show that many queries over HEDLPs can be determined by solving propositional satisfiability problems. Our mapping has several important implications: It establishes the NP-completeness of this class of disjunctive logic programs; it allows existing algorithms and tractable subsets for the satisfiability problem to be used in logic programming; it facilitates evaluation of the expressive power of disjunctive logic programs; and it leads to the discovery of useful similarities between stable model semantics and Clark's predicate completion. 1 Introduction ...
Reasoning about Qualitative Temporal Information
- Artificial Intelligence
, 1992
"... Representing and reasoning about incomplete and indefinite qualitative temporal information is an essential part of many artificial intelligence tasks. An interval-based framework and a point-based framework have been proposed for representing such temporal information. In this paper, we address ..."
Abstract
-
Cited by 147 (6 self)
- Add to MetaCart
(Show Context)
Representing and reasoning about incomplete and indefinite qualitative temporal information is an essential part of many artificial intelligence tasks. An interval-based framework and a point-based framework have been proposed for representing such temporal information. In this paper, we address two fundamental reasoning tasks that arise in applications of these frameworks: Given possibly indefinite and incomplete knowledge of the relationships between some intervals or points, (i) find a scenario that is consistent with the information provided, and (ii) find the feasible relations between all pairs of intervals or points. For the point-based framework and a restricted version of the intervalbased framework, we give computationally efficient procedures for finding a consistent scenario and for finding the feasible relations. Our algorithms are marked improvements over the previously known algorithms. In particular, we develop an O(n 2 ) time algorithm for finding one co...
Algorithms for the Satisfiability (SAT) Problem: A Survey
- DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computer-aided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract
-
Cited by 145 (3 self)
- Add to MetaCart
(Show Context)
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computer-aided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
A Theoretical Evaluation of Selected Backtracking Algorithms
- Artificial Intelligence
, 1997
"... In recent years, many new backtracking algorithms for solving constraint satisfaction problems have been proposed. The algorithms are usually evaluated by empirical testing. This method, however, has its limitations. Our paper adopts a di erent, purely theoretical approach, which is based on charact ..."
Abstract
-
Cited by 124 (3 self)
- Add to MetaCart
In recent years, many new backtracking algorithms for solving constraint satisfaction problems have been proposed. The algorithms are usually evaluated by empirical testing. This method, however, has its limitations. Our paper adopts a di erent, purely theoretical approach, which is based on characterizations of the sets of search treenodes visited by the backtracking algorithms. A notion of inconsistency between instantiations and variables is introduced, and is shown to be a useful tool for characterizing such well-known concepts as backtrack, backjump, and domain annihilation. The characterizations enable us to: (a) prove the correctness of the algorithms, and (b) partially order the algorithms according to two standard performance measures: the number of nodes visited, and the number of consistency checks performed. Among other results, we prove the correctness of Backjumping and Con ict-Directed Backjumping, and show that Forward Checking never visits more nodes than Backjumping. Our approach leads us also to propose a modi cation to two hybrid backtracking algorithms, Backmarking with Backjumping (BMJ) and Backmarking with Con ict-Directed Backjumping (BM-CBJ), so that they always perform fewer consistency checks than the original algorithms. 1