Results 1  10
of
204
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 796 (20 self)
 Add to MetaCart
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly represent statements about independence. Among these approaches we single out a method we call Tree Augmented Naive Bayes (TAN), which outperforms naive Bayes, yet at the same time maintains the computational simplicity (no search involved) and robustness that characterize naive Bayes. We experimentally tested these approaches, using problems from the University of California at Irvine repository, and compared them to C4.5, naive Bayes, and wrapper methods for feature selection.
A Bayesian computer vision system for modeling human interactions
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... We describe a realtime computer vision and machine learning system for modeling and recognizing human behaviors in a visual surveillance task [1]. The system is particularly concerned with detecting when interactions between people occur and classifying the type of interaction. Examples of interes ..."
Abstract

Cited by 538 (6 self)
 Add to MetaCart
We describe a realtime computer vision and machine learning system for modeling and recognizing human behaviors in a visual surveillance task [1]. The system is particularly concerned with detecting when interactions between people occur and classifying the type of interaction. Examples of interesting interaction behaviors include following another person, altering one's path to meet another, and so forth. Our system combines topdown with bottomup information in a closed feedback loop, with both components employing a statistical Bayesian approach [2]. We propose and compare two different statebased learning architectures, namely, HMMs and CHMMs for modeling behaviors and interactions. The CHMM model is shown to work much more efficiently and accurately. Finally, to deal with the problem of limited training data, a synthetic ªAlifestyleº training system is used to develop flexible prior models for recognizing human interactions. We demonstrate the ability to use these a priori models to accurately classify real human behaviors and interactions with no additional tuning or training.
Being Bayesian about network structure
 Machine Learning
, 2000
"... Abstract. In many multivariate domains, we are interested in analyzing the dependency structure of the underlying distribution, e.g., whether two variables are in direct interaction. We can represent dependency structures using Bayesian network models. To analyze a given data set, Bayesian model sel ..."
Abstract

Cited by 299 (3 self)
 Add to MetaCart
(Show Context)
Abstract. In many multivariate domains, we are interested in analyzing the dependency structure of the underlying distribution, e.g., whether two variables are in direct interaction. We can represent dependency structures using Bayesian network models. To analyze a given data set, Bayesian model selection attempts to find the most likely (MAP) model, and uses its structure to answer these questions. However, when the amount of available data is modest, there might be many models that have nonnegligible posterior. Thus, we want compute the Bayesian posterior of a feature, i.e., the total posterior probability of all models that contain it. In this paper, we propose a new approach for this task. We first show how to efficiently compute a sum over the exponential number of networks that are consistent with a fixed order over network variables. This allows us to compute, for a given order, both the marginal probability of the data and the posterior of a feature. We then use this result as the basis for an algorithm that approximates the Bayesian posterior of a feature. Our approach uses a Markov Chain Monte Carlo (MCMC) method, but over orders rather than over network structures. The space of orders is smaller and more regular than the space of structures, and has much a smoother posterior “landscape”. We present empirical results on synthetic and reallife datasets that compare our approach to full model averaging (when possible), to MCMC over network structures, and to a nonBayesian bootstrap approach.
The Bayes Net Toolbox for MATLAB
 Computing Science and Statistics
, 2001
"... The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the ..."
Abstract

Cited by 250 (1 self)
 Add to MetaCart
The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the web page has received over 28,000 hits since May 2000. In this paper, we discuss a broad spectrum of issues related to graphical models (directed and undirected), and describe, at a highlevel, how BNT was designed to cope with them all. We also compare BNT to other software packages for graphical models, and to the nascent OpenBayes effort.
Optimal Structure Identification with Greedy Search
, 2002
"... In this paper we prove the socalled "Meek Conjecture". In particular, we show that if a is an independence map of another DAG then there exists a finite sequence of edge additions and covered edge reversals in such that (1) after each edge modification and (2) after all mod ..."
Abstract

Cited by 249 (1 self)
 Add to MetaCart
In this paper we prove the socalled "Meek Conjecture". In particular, we show that if a is an independence map of another DAG then there exists a finite sequence of edge additions and covered edge reversals in such that (1) after each edge modification and (2) after all modifications H.
Automatic Construction of Decision Trees from Data: A MultiDisciplinary Survey
 Data Mining and Knowledge Discovery
, 1997
"... Decision trees have proved to be valuable tools for the description, classification and generalization of data. Work on constructing decision trees from data exists in multiple disciplines such as statistics, pattern recognition, decision theory, signal processing, machine learning and artificial ne ..."
Abstract

Cited by 224 (1 self)
 Add to MetaCart
(Show Context)
Decision trees have proved to be valuable tools for the description, classification and generalization of data. Work on constructing decision trees from data exists in multiple disciplines such as statistics, pattern recognition, decision theory, signal processing, machine learning and artificial neural networks. Researchers in these disciplines, sometimes working on quite different problems, identified similar issues and heuristics for decision tree construction. This paper surveys existing work on decision tree construction, attempting to identify the important issues involved, directions the work has taken and the current state of the art. Keywords: classification, treestructured classifiers, data compaction 1. Introduction Advances in data collection methods, storage and processing technology are providing a unique challenge and opportunity for automated data exploration techniques. Enormous amounts of data are being collected daily from major scientific projects e.g., Human Genome...
Modelling gene expression data using dynamic bayesian networks
, 1999
"... Recently, there has been much interest in reverse engineering genetic networks from time series data. In this paper, we show that most of the proposed discrete time models — including the boolean network model [Kau93, SS96], the linear model of D’haeseleer et al. [DWFS99], and the nonlinear model of ..."
Abstract

Cited by 223 (1 self)
 Add to MetaCart
Recently, there has been much interest in reverse engineering genetic networks from time series data. In this paper, we show that most of the proposed discrete time models — including the boolean network model [Kau93, SS96], the linear model of D’haeseleer et al. [DWFS99], and the nonlinear model of Weaver et al. [WWS99] — are all special cases of a general class of models called Dynamic Bayesian Networks (DBNs). The advantages of DBNs include the ability to model stochasticity, to incorporate prior knowledge, and to handle hidden variables and missing data in a principled way. This paper provides a review of techniques for learning DBNs. Keywords: Genetic networks, boolean networks, Bayesian networks, neural networks, reverse engineering, machine learning. 1
Probabilistic independence networks for hidden Markov probability models
, 1996
"... Graphical techniques for modeling the dependencies of random variables have been explored in a variety of different areas including statistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics. Formalisms for manipulating these models have been develop ..."
Abstract

Cited by 193 (13 self)
 Add to MetaCart
Graphical techniques for modeling the dependencies of random variables have been explored in a variety of different areas including statistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics. Formalisms for manipulating these models have been developed relatively independently in these research communities. In this paper we explore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independence networks (PINs). The paper contains a selfcontained review of the basic principles of PINs. It is shown that the wellknown forwardbackward (FB) and Viterbi algorithms for HMMs are special cases of more general inference algorithms for arbitrary PINs. Furthermore, the existence of inference and estimation algorithms for more general graphical models provides a set of analysis tools for HMM practitioners who wish to explore a richer class of HMM structures. Examples of relatively complex models to handle sensor fusion and coarticulation in speech recognition are introduced and treated within the graphical model framework to illustrate the advantages of the general approach.
Adaptive Probabilistic Networks with Hidden Variables
 Machine Learning
, 1997
"... . Probabilistic networks (also known as Bayesian belief networks) allow a compact description of complex stochastic relationships among several random variables. They are rapidly becoming the tool of choice for uncertain reasoning in artificial intelligence. In this paper, we investigate the problem ..."
Abstract

Cited by 176 (9 self)
 Add to MetaCart
. Probabilistic networks (also known as Bayesian belief networks) allow a compact description of complex stochastic relationships among several random variables. They are rapidly becoming the tool of choice for uncertain reasoning in artificial intelligence. In this paper, we investigate the problem of learning probabilistic networks with known structure and hidden variables. This is an important problem, because structure is much easier to elicit from experts than numbers, and the world is rarely fully observable. We present a gradientbased algorithmand show that the gradient can be computed locally, using information that is available as a byproduct of standard probabilistic network inference algorithms. Our experimental results demonstrate that using prior knowledge about the structure, even with hidden variables, can significantly improve the learning rate of probabilistic networks. We extend the method to networks in which the conditional probability tables are described using a ...
MachineLearning Research  Four Current Directions
"... Machine Learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (a) improving classification accuracy by learning ensembles of classifiers, (b) methods for scaling up super ..."
Abstract

Cited by 149 (1 self)
 Add to MetaCart
Machine Learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (a) improving classification accuracy by learning ensembles of classifiers, (b) methods for scaling up supervised learning algorithms, (c) reinforcement learning, and (d) learning complex stochastic models.