Results 1 -
1 of
1
Which Problems Have Strongly Exponential Complexity?
- Journal of Computer and System Sciences
, 1998
"... For several NP-complete problems, there have been a progression of better but still exponential algorithms. In this paper, we address the relative likelihood of sub-exponential algorithms for these problems. We introduce a generalized reduction which we call Sub-Exponential Reduction Family (SERF) t ..."
Abstract
-
Cited by 249 (9 self)
- Add to MetaCart
(Show Context)
For several NP-complete problems, there have been a progression of better but still exponential algorithms. In this paper, we address the relative likelihood of sub-exponential algorithms for these problems. We introduce a generalized reduction which we call Sub-Exponential Reduction Family (SERF) that preserves sub-exponential complexity. We show that CircuitSAT is SERF-complete for all NP-search problems, and that for any fixed k, k-SAT, k-Colorability, k-Set Cover, Independent Set, Clique, Vertex Cover, are SERF--complete for the class SNP of search problems expressible by second order existential formulas whose first order part is universal. In particular, sub-exponential complexity for any one of the above problems implies the same for all others. We also look at the issue of proving strongly exponential lower bounds for AC 0 ; that is, bounds of the form 2 \Omega\Gamma n) . This problem is even open for depth-3 circuits. In fact, such a bound for depth-3 circuits with even l...