Results 1  10
of
694
Transform Analysis and Asset Pricing for Affine JumpDiffusions
 Econometrica
, 2000
"... In the setting of ‘‘affine’ ’ jumpdiffusion state processes, this paper provides an analytical treatment of a class of transforms, including various Laplace and Fourier transforms as special cases, that allow an analytical treatment of a range of valuation and econometric problems. Example applicat ..."
Abstract

Cited by 704 (38 self)
 Add to MetaCart
In the setting of ‘‘affine’ ’ jumpdiffusion state processes, this paper provides an analytical treatment of a class of transforms, including various Laplace and Fourier transforms as special cases, that allow an analytical treatment of a range of valuation and econometric problems. Example applications include fixedincome pricing models, with a role for intensitybased models of default, as well as a wide range of optionpricing applications. An illustrative example examines the implications of stochastic volatility and jumps for option valuation. This example highlights the impact on option ‘smirks ’ of the joint distribution of jumps in volatility and jumps in the underlying asset price, through both jump amplitude as well as jump timing.
Modeling and Forecasting Realized Volatility
, 2002
"... this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are a ..."
Abstract

Cited by 547 (50 self)
 Add to MetaCart
this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are approximately Gaussian. Third, the longrun dynamics of realized logarithmic volatilities are well approximated by a fractionallyintegrated longmemory process. Motivated by the three ABDL empirical regularities, we proceed to estimate and evaluate a multivariate model for the logarithmic realized volatilities: a fractionallyintegrated Gaussian vector autoregression (VAR) . Importantly, our approach explicitly permits measurement errors in the realized volatilities. Comparing the resulting volatility forecasts to those obtained from currently popular daily volatility models and more complicated highfrequency models, we find that our simple Gaussian VAR forecasts generally produce superior forecasts. Furthermore, we show that, given the theoretically motivated and empirically plausible assumption of normally distributed returns conditional on the realized volatilities, the resulting lognormalnormal mixture forecast distribution provides conditionally wellcalibrated density forecasts of returns, from which we obtain accurate estimates of conditional return quantiles. In the remainder of this paper, we proceed as follows. We begin in section 2 by formally developing the relevant quadratic variation theory within a standard frictionless arbitragefree multivariate pricing environment. In section 3 we discuss the practical construction of realized volatilities from highfrequency foreign exchange returns. Next, in section 4 we summarize the salient distributional features of r...
The JumpRisk Premia Implicit in Options: Evidence from an Integrated TimeSeries Study
 Journal of Financial Economics
"... Abstract: This paper examines the joint time series of the S&P 500 index and nearthemoney shortdated option prices with an arbitragefree model, capturing both stochastic volatility and jumps. Jumprisk premia uncovered from the joint data respond quickly to market volatility, becoming more p ..."
Abstract

Cited by 417 (3 self)
 Add to MetaCart
Abstract: This paper examines the joint time series of the S&P 500 index and nearthemoney shortdated option prices with an arbitragefree model, capturing both stochastic volatility and jumps. Jumprisk premia uncovered from the joint data respond quickly to market volatility, becoming more prominent during volatile markets. This form of jumprisk premia is important not only in reconciling the dynamics implied by the joint data, but also in explaining the volatility “smirks” of crosssectional options data.
The Variance Gamma Process and Option Pricing.
 European Finance Review
, 1998
"... : A three parameter stochastic process, termed the variance gamma process, that generalizes Brownian motion is developed as a model for the dynamics of log stock prices. The process is obtained by evaluating Brownian motion with drift at a random time given by a gamma process. The two additional par ..."
Abstract

Cited by 365 (34 self)
 Add to MetaCart
: A three parameter stochastic process, termed the variance gamma process, that generalizes Brownian motion is developed as a model for the dynamics of log stock prices. The process is obtained by evaluating Brownian motion with drift at a random time given by a gamma process. The two additional parameters are the drift of the Brownian motion and the volatility of the time change. These additional parameters provide control over the skewness and kurtosis of the return distribution. Closed forms are obtained for the return density and the prices of European options. The statistical and risk neutral densities are estimated for data on the S&P500 Index and the prices of options on this Index. It is observed that the statistical density is symmetric with some kurtosis, while the risk neutral density is negatively skewed with a larger kurtosis. The additional parameters also correct for pricing biases of the Black Scholes model that is a parametric special case of the option pricing model d...
Post'87 Crash Fears in the S&P 500 Futures Option Market
, 1998
"... Postcrash distributions inferred from S ..."
Implied Volatility Functions: Empirical Tests
, 1995
"... Black and Scholes (1973) implied volatilities tend to be systematically related to the option's exercise price and time to expiration. Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) attribute this behavior to the fact that the Black/Scholes constant volatility assumption is violat ..."
Abstract

Cited by 303 (4 self)
 Add to MetaCart
Black and Scholes (1973) implied volatilities tend to be systematically related to the option's exercise price and time to expiration. Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) attribute this behavior to the fact that the Black/Scholes constant volatility assumption is violated in practice. These authors hypothesize that the volatility of the underlying asset's return is a deterministic function of the asset price and time. Since the volatility function in their model has an arbitrary specification, the deterministic volatility (DV) option valuation model has the potential of fitting the observed crosssection of option prices exactly. Using a sample of S&P 500 index options during the period June 1988 and December 1993, we attempt to evaluate the economic significance of the implied volatility function by examining the predictive and hedging performance of the DV option valuation model. Discussion draft: September 8, 1995 ____________________________________________...
The Impact of Jumps in Volatility and Returns
 Journal of Finance
, 2002
"... This paper examines a class of continuoustime models with stochastic volatility that incorporate jumps in returns and volatility. We develop a likelihoodbased es timation strategy and provide estimates of model parameters, spot volatility, jump times and jump sizes using S&P 500 and Nasdaq ..."
Abstract

Cited by 244 (12 self)
 Add to MetaCart
This paper examines a class of continuoustime models with stochastic volatility that incorporate jumps in returns and volatility. We develop a likelihoodbased es timation strategy and provide estimates of model parameters, spot volatility, jump times and jump sizes using S&P 500 and Nasdaq 100 index returns. Estimates of jump times, jump sizes and volatility are particularly useful for identifying the effects of these factors during periods of market stress, such as those in 1987, 1997 and 1998.
An empirical investigation of continuoustime equity return models
 Journal of Finance
, 2002
"... This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronou ..."
Abstract

Cited by 240 (12 self)
 Add to MetaCart
This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronounced negative relationship between return and volatility innovations. We also find that the dominant empirical characteristics of the return process appear to be priced by the option market. Our analysis indicates a general correspondence between the evidence extracted from daily equityindex returns and the stylized features of the corresponding options market prices. MUCH ASSET AND DERIVATIVE PRICING THEORY is based on diffusion models for primary securities. However, prescriptions for practical applications derived from these models typically produce disappointing results. A possible explanation could be that analytic formulas for pricing and hedging are available for only a limited set of continuoustime representations for asset returns
Do stock prices and volatility jump? Reconciling evidence from spot and option prices
, 2001
"... This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation ..."
Abstract

Cited by 234 (6 self)
 Add to MetaCart
This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation period. This contrasts previous findings where stochastic volatility paths are found to be too smooth relative to the option implied dynamics. While the models perform well during the high volatility estimation period, they tend to overprice long dated contracts outofsample. This evidence points towards a too simplistic specification of the mean dynamics of volatility.