Results 1  10
of
187
Image retrieval: Current techniques, promising directions and open issues
 Journal of Visual Communication and Image Representation
, 1999
"... This paper provides a comprehensive survey of the technical achievements in the research area of image retrieval, especially contentbased image retrieval, an area that has been so active and prosperous in the past few years. The survey includes 100+ papers covering the research aspects of image fea ..."
Abstract

Cited by 492 (14 self)
 Add to MetaCart
(Show Context)
This paper provides a comprehensive survey of the technical achievements in the research area of image retrieval, especially contentbased image retrieval, an area that has been so active and prosperous in the past few years. The survey includes 100+ papers covering the research aspects of image feature representation and extraction, multidimensional indexing, and system design, three of the fundamental bases of contentbased image retrieval. Furthermore, based on the stateoftheart technology available now and the demand from realworld applications, open research issues are identified and future promising research directions are suggested. C ○ 1999 Academic Press 1.
On Clusterings: Good, Bad and Spectral
, 2003
"... We motivate and develop a natural bicriteria measure for assessing the quality of a clustering which avoids the drawbacks of existing measures. A simple recursive heuristic is shown to have polylogarithmic worstcase guarantees under the new measure. The main result of the paper is the analysis of ..."
Abstract

Cited by 336 (13 self)
 Add to MetaCart
We motivate and develop a natural bicriteria measure for assessing the quality of a clustering which avoids the drawbacks of existing measures. A simple recursive heuristic is shown to have polylogarithmic worstcase guarantees under the new measure. The main result of the paper is the analysis of a popular spectral algorithm. One variant of spectral clustering turns out to have effective worstcase guarantees; another finds a "good" clustering, if one exists.
Approximation Algorithms for Projective Clustering
 Proceedings of the ACM SIGMOD International Conference on Management of data, Philadelphia
, 2000
"... We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w ..."
Abstract

Cited by 302 (21 self)
 Add to MetaCart
We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w be the smallest value so that S can be covered by k hyperstrips (resp. hypercylinders), each of width (resp. diameter) at most w : In the plane, the two problems are equivalent. It is NPHard to compute k planar strips of width even at most Cw ; for any constant C ? 0 [50]. This paper contains four main results related to projective clustering: (i) For d = 2, we present a randomized algorithm that computes O(k log k) strips of width at most 6w that cover S. Its expected running time is O(nk 2 log 4 n) if k 2 log k n; it also works for larger values of k, but then the expected running time is O(n 2=3 k 8=3 log 4 n). We also propose another algorithm that computes a c...
Clustering data streams: Theory and practice
 IEEE TKDE
, 2003
"... Abstract—The data stream model has recently attracted attention for its applicability to numerous types of data, including telephone records, Web documents, and clickstreams. For analysis of such data, the ability to process the data in a single pass, or a small number of passes, while using little ..."
Abstract

Cited by 154 (4 self)
 Add to MetaCart
(Show Context)
Abstract—The data stream model has recently attracted attention for its applicability to numerous types of data, including telephone records, Web documents, and clickstreams. For analysis of such data, the ability to process the data in a single pass, or a small number of passes, while using little memory, is crucial. We describe such a streaming algorithm that effectively clusters large data streams. We also provide empirical evidence of the algorithm’s performance on synthetic and real data streams. Index Terms—Clustering, data streams, approximation algorithms. 1
Hierarchical Document Clustering Using Frequent Itemsets
 IN PROC. SIAM INTERNATIONAL CONFERENCE ON DATA MINING 2003 (SDM 2003
, 2003
"... A major challenge in document clustering is the extremely high dimensionality. For example, the vocabulary for a document set can easily be thousands of words. On the other hand, each document often contains a small fraction of words in the vocabulary. These features require special handlings. Anoth ..."
Abstract

Cited by 126 (3 self)
 Add to MetaCart
A major challenge in document clustering is the extremely high dimensionality. For example, the vocabulary for a document set can easily be thousands of words. On the other hand, each document often contains a small fraction of words in the vocabulary. These features require special handlings. Another requirement is hierarchical clustering where clustered documents can be browsed according to the increasing specificity of topics. In this paper, we propose to use the notion of frequent itemsets, which comes from association rule mining, for document clustering. The intuition of our clustering criterion is that each cluster is identified by some common words, called frequent itemsets, for the documents in the cluster. Frequent itemsets are also used to produce a hierarchical topic tree for clusters. By focusing on frequent items, the dimensionality of the document set is drastically reduced. We show that this method outperforms best existing methods in terms of both clustering accuracy and scalability.
Efficient algorithms for geometric optimization
 ACM Comput. Surv
, 1998
"... We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear progra ..."
Abstract

Cited by 117 (12 self)
 Add to MetaCart
We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear programming and related problems, and LPtype problems and their efficient solution. We then describe a variety of applications of these and other techniques to numerous problems in geometric optimization, including facility location, proximity problems, statistical estimators and metrology, placement and intersection of polygons and polyhedra, and ray shooting and other querytype problems.
Better Streaming Algorithms for Clustering Problems
 In Proc. of 35th ACM Symposium on Theory of Computing (STOC
, 2003
"... We study cluster ng pr blems in the str aming model, wher e the goal is to cluster a set of points by making one pass (or a few passes) over the data using a small amount of storSD space.Our mainr esult is a r ndomized algor ithm for kMedian prE lem which p duces a constant factor a ..."
Abstract

Cited by 90 (1 self)
 Add to MetaCart
We study cluster ng pr blems in the str aming model, wher e the goal is to cluster a set of points by making one pass (or a few passes) over the data using a small amount of storSD space.Our mainr esult is a r ndomized algor ithm for kMedian prE lem which p duces a constant factor appr oximation in one pass using storR4 space O(kpolylog n). This is a significant imp r vement of the prS ious best algor5 hm which yielded a 2 appr ximation using O(n )space.
Evolutionary Spectral Clustering by Incorporating Temporal Smoothness
, 2007
"... Evolutionary clustering is an emerging research area essential to important applications such as clustering dynamic Web and blog contents and clustering data streams. In evolutionary clustering, a good clustering result should fit the current data well, while simultaneously not deviate too dramatica ..."
Abstract

Cited by 89 (8 self)
 Add to MetaCart
Evolutionary clustering is an emerging research area essential to important applications such as clustering dynamic Web and blog contents and clustering data streams. In evolutionary clustering, a good clustering result should fit the current data well, while simultaneously not deviate too dramatically from the recent history. To fulfill this dual purpose, a measure of temporal smoothness is integrated in the overall measure of clustering quality. In this paper, we propose two frameworks that incorporate temporal smoothness in evolutionary spectral clustering. For both frameworks, we start with intuitions gained from the wellknown kmeans clustering problem, and then propose and solve corresponding cost functions for the evolutionary spectral clustering problems. Our solutions to the evolutionary spectral clustering problems provide more stable and consistent clustering results that are less sensitive to shortterm noises while at the same time are adaptive to longterm cluster drifts. Furthermore, we demonstrate that our methods provide the optimal solutions to the relaxed versions of the corresponding evolutionary kmeans clustering problems. Performance experiments over a number of real and synthetic data sets illustrate our evolutionary spectral clustering methods provide more robust clustering results that are not sensitive to noise and can adapt to data drifts.
Exact and Approximation Algorithms for Clustering
, 1997
"... In this paper we present a n O(k1�1=d) time algorithm for solving the kcenter problem in R d, under L1 and L2 metrics. The algorithm extends to other metrics, and can be used to solve the discrete kcenter problem, as well. We also describe a simple (1 +)approximation algorithm for the kcenter pr ..."
Abstract

Cited by 78 (6 self)
 Add to MetaCart
In this paper we present a n O(k1�1=d) time algorithm for solving the kcenter problem in R d, under L1 and L2 metrics. The algorithm extends to other metrics, and can be used to solve the discrete kcenter problem, as well. We also describe a simple (1 +)approximation algorithm for the kcenter problem, with running time O(n log k) + (k = ) O(k1�1=d). Finally, we present a n O(k1�1=d) time algorithm for solving the Lcapacitated kcenter problem, provided that L = (n=k 1�1=d) or L = O(1). We conclude with a simple approximation algorithm for the Lcapacitated kcenter problem.