Results 1  10
of
463
Multiple kernel learning, conic duality, and the SMO algorithm
 In Proceedings of the 21st International Conference on Machine Learning (ICML
, 2004
"... While classical kernelbased classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimiz ..."
Abstract

Cited by 444 (31 self)
 Add to MetaCart
(Show Context)
While classical kernelbased classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimization of the coefficients of such a combination reduces to a convex optimization problem known as a quadraticallyconstrained quadratic program (QCQP). Unfortunately, current convex optimization toolboxes can solve this problem only for a small number of kernels and a small number of data points; moreover, the sequential minimal optimization (SMO) techniques that are essential in largescale implementations of the SVM cannot be applied because the cost function is nondifferentiable. We propose a novel dual formulation of the QCQP as a secondorder cone programming problem, and show how to exploit the technique of MoreauYosida regularization to yield a formulation to which SMO techniques can be applied. We present experimental results that show that our SMObased algorithm is significantly more efficient than the generalpurpose interior point methods available in current optimization toolboxes. 1.
Large scale multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... While classical kernelbased learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We s ..."
Abstract

Cited by 340 (20 self)
 Add to MetaCart
While classical kernelbased learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We show that it can be rewritten as a semiinfinite linear program that can be efficiently solved by recycling the standard SVM implementations. Moreover, we generalize the formulation and our method to a larger class of problems, including regression and oneclass classification. Experimental results show that the proposed algorithm works for hundred thousands of examples or hundreds of kernels to be combined, and helps for automatic model selection, improving the interpretability of the learning result. In a second part we discuss general speed up mechanism for SVMs, especially when used with sparse feature maps as appear for string kernels, allowing us to train a string kernel SVM on a 10 million realworld splice data set from computational biology. We integrated multiple kernel learning in our machine learning toolbox SHOGUN for which the source code is publicly available at
Learning the discriminative powerinvariance tradeoff
 IN ICCV
, 2007
"... We investigate the problem of learning optimal descriptors for a given classification task. Many handcrafted descriptors have been proposed in the literature for measuring visual similarity. Looking past initial differences, what really distinguishes one descriptor from another is the tradeoff that ..."
Abstract

Cited by 228 (4 self)
 Add to MetaCart
We investigate the problem of learning optimal descriptors for a given classification task. Many handcrafted descriptors have been proposed in the literature for measuring visual similarity. Looking past initial differences, what really distinguishes one descriptor from another is the tradeoff that it achieves between discriminative power and invariance. Since this tradeoff must vary from task to task, no single descriptor can be optimal in all situations. Our focus, in this paper, is on learning the optimal tradeoff for classification given a particular training set and prior constraints. The problem is posed in the kernel learning framework. We learn the optimal, domainspecific kernel as a combination of base kernels corresponding to base features which achieve different levels of tradeoff (such as no invariance, rotation invariance, scale invariance, affine invariance, etc.) This leads to a convex optimisation problem with a unique global optimum which can be solved for efficiently. The method is shown to achieve stateoftheart performance on the UIUC textures, Oxford flowers and Caltech 101 datasets.
Classification of hyperspectral remote sensing images with support vector machines
 IEEE Trans. Geosci. Remote Sens
, 2004
"... Abstract—This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs). First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimension ..."
Abstract

Cited by 190 (5 self)
 Add to MetaCart
(Show Context)
Abstract—This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs). First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces. Then, we assess the effectiveness of SVMs with respect to conventional featurereductionbased approaches and their performances in hypersubspaces of various dimensionalities. To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (i.e., radial basis function neural networks and the Knearest neighbor classifier). Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data. In particular, four different multiclass strategies are analyzed and compared: the oneagainstall, the oneagainstone, and two hierarchical treebased strategies. Different performance indicators have been used to support our experimental studies in a detailed and accurate way, i.e., the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture. The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (featurereduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data. Index Terms—Classification, feature reduction, Hughes phenomenon, hyperspectral images, multiclass problems, remote sensing, support vector machines (SVMs). I.
Cluster kernels for semisupervised learning
 Advances in Neural Information Processing Systems
, 2002
"... We propose a framework to incorporate unlabeled data in kernel classifier, based on the idea that two points in the same cluster are more likely to have the same label. This is achieved by modifying the eigenspectrum of the kernel matrix. Experimental results assess the validity of this approach. 1 ..."
Abstract

Cited by 189 (10 self)
 Add to MetaCart
(Show Context)
We propose a framework to incorporate unlabeled data in kernel classifier, based on the idea that two points in the same cluster are more likely to have the same label. This is achieved by modifying the eigenspectrum of the kernel matrix. Experimental results assess the validity of this approach. 1
Training a support vector machine in the primal
 Neural Computation
, 2007
"... Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and nonlinear SVMs, and that there is no reason for ignoring this possibilty. On the cont ..."
Abstract

Cited by 155 (5 self)
 Add to MetaCart
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and nonlinear SVMs, and that there is no reason for ignoring this possibilty. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.
Learning the kernel function via regularization
 Journal of Machine Learning Research
, 2005
"... We study the problem of finding an optimal kernel from a prescribed convex set of kernels K for learning a realvalued function by regularization. We establish for a wide variety of regularization functionals that this leads to a convex optimization problem and, for square loss regularization, we ch ..."
Abstract

Cited by 151 (8 self)
 Add to MetaCart
(Show Context)
We study the problem of finding an optimal kernel from a prescribed convex set of kernels K for learning a realvalued function by regularization. We establish for a wide variety of regularization functionals that this leads to a convex optimization problem and, for square loss regularization, we characterize the solution of this problem. We show that, although K may be an uncountable set, the optimal kernel is always obtained as a convex combination of at most m+2 basic kernels, where m is the number of data examples. In particular, our results apply to learning the optimal radial kernel or the optimal dot product kernel. 1.
Cbsa: Contentbased soft annotation for multimodal image retrieval using bayes point machines.
 IEEE Trans. on Circuits and Systems for Video Technology,
, 2003
"... ..."
An introduction to boosting and leveraging
 Advanced Lectures on Machine Learning, LNCS
, 2003
"... ..."
(Show Context)
Core vector machines: Fast SVM training on very large data sets
 Journal of Machine Learning Research
, 2005
"... Standard SVM training has O(m 3) time and O(m 2) space complexities, where m is the training set size. It is thus computationally infeasible on very large data sets. By observing that practical SVM implementations only approximate the optimal solution by an iterative strategy, we scale up kernel met ..."
Abstract

Cited by 137 (15 self)
 Add to MetaCart
(Show Context)
Standard SVM training has O(m 3) time and O(m 2) space complexities, where m is the training set size. It is thus computationally infeasible on very large data sets. By observing that practical SVM implementations only approximate the optimal solution by an iterative strategy, we scale up kernel methods by exploiting such “approximateness ” in this paper. We first show that many kernel methods can be equivalently formulated as minimum enclosing ball (MEB) problems in computational geometry. Then, by adopting an efficient approximate MEB algorithm, we obtain provably approximately optimal solutions with the idea of core sets. Our proposed Core Vector Machine (CVM) algorithm can be used with nonlinear kernels and has a time complexity that is linear in m and a space complexity that is independent of m. Experiments on large toy and realworld data sets demonstrate that the CVM is as accurate as existing SVM implementations, but is much faster and can handle much larger data sets than existing scaleup methods. For example, CVM with the Gaussian kernel produces superior results on the KDDCUP99 intrusion detection data, which has about five million training patterns, in only 1.4 seconds on a 3.2GHz Pentium–4 PC.