Results 1 - 10
of
52
A new alternating minimization algorithm for total variation image reconstruction
- SIAM J. IMAGING SCI
, 2008
"... We propose, analyze and test an alternating minimization algorithm for recovering images from blurry and noisy observations with total variation (TV) regularization. This algorithm arises from a new half-quadratic model applicable to not only the anisotropic but also isotropic forms of total variati ..."
Abstract
-
Cited by 224 (26 self)
- Add to MetaCart
(Show Context)
We propose, analyze and test an alternating minimization algorithm for recovering images from blurry and noisy observations with total variation (TV) regularization. This algorithm arises from a new half-quadratic model applicable to not only the anisotropic but also isotropic forms of total variation discretizations. The per-iteration computational complexity of the algorithm is three Fast Fourier Transforms (FFTs). We establish strong convergence properties for the algorithm including finite convergence for some variables and relatively fast exponential (or q-linear in optimization terminology) convergence for the others. Furthermore, we propose a continuation scheme to accelerate the practical convergence of the algorithm. Extensive numerical results show that our algorithm performs favorably in comparison to several state-of-the-art algorithms. In particular, it runs orders of magnitude faster than the Lagged Diffusivity algorithm for total-variation-based deblurring. Some extensions of our algorithm are also discussed.
A variational formulation for frame-based inverse problems
- Inverse Problems
, 2007
"... A convex variational framework is proposed for solving inverse problems in Hilbert spaces with a priori information on the representation of the target solution in a frame. The objective function to be minimized consists of a separable term penalizing each frame coefficient individually and of a smo ..."
Abstract
-
Cited by 60 (21 self)
- Add to MetaCart
(Show Context)
A convex variational framework is proposed for solving inverse problems in Hilbert spaces with a priori information on the representation of the target solution in a frame. The objective function to be minimized consists of a separable term penalizing each frame coefficient individually and of a smooth term modeling the data formation model as well as other constraints. Sparsity-constrained and Bayesian formulations are examined as special cases. A splitting algorithm is presented to solve this problem and its convergence is established in infinite-dimensional spaces under mild conditions on the penalization functions, which need not be differentiable. Numerical simulations demonstrate applications to frame-based image restoration. 1
Maximum correntropy criterion for robust face recognition
- IEEE Trans. Pattern Anal. Mach. Intell
"... Abstract—In this paper, we present a sparse correntropy framework for computing robust sparse representations of face images for recognition. Compared with the state-of-the-art l1norm-based sparse representation classifier (SRC), which assumes that noise also has a sparse representation, our sparse ..."
Abstract
-
Cited by 28 (9 self)
- Add to MetaCart
(Show Context)
Abstract—In this paper, we present a sparse correntropy framework for computing robust sparse representations of face images for recognition. Compared with the state-of-the-art l1norm-based sparse representation classifier (SRC), which assumes that noise also has a sparse representation, our sparse algorithm is developed based on the maximum correntropy criterion, which is much more insensitive to outliers. In order to develop a more tractable and practical approach, we in particular impose nonnegativity constraint on the variables in the maximum correntropy criterion and develop a half-quadratic optimization technique to approximately maximize the objective function in an alternating way so that the complex optimization problem is reduced to learning a sparse representation through a weighted linear least squares problem with nonnegativity constraint at each iteration. Our extensive experiments demonstrate that the proposed method is more robust and efficient in dealing with the occlusion and corruption problems in face recognition as compared to the related state-of-the-art methods. In particular, it shows that the proposed method can improve both recognition accuracy and receiver operator characteristic (ROC) curves, while the computational cost is much lower than the SRC algorithms. Index Terms—Information theoretical learning, correntropy, linear least squares, half-quadratic optimization, sparse representation, M-estimator, face recognition, occlusion and corruption. Ç 1
A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction
- Medical Imaging, IEEE Transactions on
, 2012
"... Abstract—Statistical image reconstruction using penalized weighted least-squares (PWLS) criteria can improve image-quality in X-ray CT. However, the huge dynamic range of the statistical weights leads to a highly shift-variant inverse problem making it difficult to precondition and accelerate existi ..."
Abstract
-
Cited by 27 (8 self)
- Add to MetaCart
(Show Context)
Abstract—Statistical image reconstruction using penalized weighted least-squares (PWLS) criteria can improve image-quality in X-ray CT. However, the huge dynamic range of the statistical weights leads to a highly shift-variant inverse problem making it difficult to precondition and accelerate existing iterative algorithms that attack the statistical model directly. We propose to alleviate the problem by using a variable-splitting scheme that separates the shift-variant and (“nearly”) invariant components of the statistical data model and also decouples the regularization term. This leads to an equivalent constrained problem that we tackle using the classical method-of-multipliers framework with alternating minimization. The specific form of our splitting yields an alternating direction method of multipliers (ADMM) algorithm with an inner-step involving a “nearly ” shift-invariant linear system that is suitable for FFT-based preconditioning using cone-type filters. The proposed method can efficiently handle a variety of convex regularization criteria including smooth edge-preserving regularizers and nonsmooth sparsity-promoting ones based on the ℓ1-norm and total variation. Numerical experiments with synthetic and real in vivo human data illustrate that cone-filter preconditioners accelerate the proposed ADMM resulting in fast convergence of ADMM compared to conventional (nonlinear conjugate gradient, ordered subsets) and state-of-the-art (MFISTA, split-Bregman) algorithms that are applicable for CT.
The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration
"... A popular way to restore images comprising edges is to minimize a cost-function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularization term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) min ..."
Abstract
-
Cited by 20 (4 self)
- Add to MetaCart
(Show Context)
A popular way to restore images comprising edges is to minimize a cost-function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularization term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with non-convex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process. Hence the name “half quadratic”. Since then, a large amount of papers were dedicated to HQ minimization and important results including edge-preservation along with convex regularization and convergence have been obtained. In this paper we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost-function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld’s method, are straightforward.
Robust principal component analysis based on maximum correntropy criterion
- IEEE Trans. Image Process
, 2011
"... Abstract—Principal component analysis (PCA) minimizes the mean square error (MSE) and is sensitive to outliers. In this paper, we present a new rotational-invariant PCA based on maximum correntropy criterion (MCC). A half-quadratic optimization algorithm is adopted to compute the correntropy objecti ..."
Abstract
-
Cited by 10 (2 self)
- Add to MetaCart
(Show Context)
Abstract—Principal component analysis (PCA) minimizes the mean square error (MSE) and is sensitive to outliers. In this paper, we present a new rotational-invariant PCA based on maximum correntropy criterion (MCC). A half-quadratic optimization algorithm is adopted to compute the correntropy objective. At each iteration, the complex optimization problem is reduced to a quadratic problem that can be efficiently solved by a standard optimization method. The proposed method exhibits the following benefits: 1) it is robust to outliers through the mechanism of MCC which can be more theoretically solid than a heuristic rule based on MSE; 2) it requires no assumption about the zero-mean of data for processing and can estimate data mean during optimization; and 3) its optimal solution consists of principal eigenvectors of a robust covariance matrix corresponding to the largest eigen-values. In addition, kernel techniques are further introduced in the proposed method to deal with nonlinearly distributed data. Numerical results demonstrate that the proposed method can outperform robust rotational-invariant PCAs based on norm when outliers occur. Index Terms—Correntropy, half-quadratic optimization, prin-cipal component analysis (PCA), robust. I.
Convergence of Conjugate Gradient Methods with a Closed-Form Stepsize Formula
, 2008
"... Conjugate gradient methods are efficient methods for minimizing differentiable objective functions in large dimension spaces. However, converging line search strategies are usually not easy to choose, nor to implement. Sun and colleagues (Ann. Oper. Res. 103:161–173, 2001; J. Comput. Appl. Math. 14 ..."
Abstract
-
Cited by 10 (5 self)
- Add to MetaCart
Conjugate gradient methods are efficient methods for minimizing differentiable objective functions in large dimension spaces. However, converging line search strategies are usually not easy to choose, nor to implement. Sun and colleagues (Ann. Oper. Res. 103:161–173, 2001; J. Comput. Appl. Math. 146:37–45, 2002) introduced a simple stepsize formula. However, the associated convergence domain happens to be overrestrictive, since it precludes the optimal stepsize in the convex quadratic case. Here, we identify this stepsize formula with one iteration of the Weiszfeld algorithm in the scalar case. More generally, we propose to make use of a finite number of iterates of such an algorithm to compute the stepsize. In this framework, we establish a new convergence domain, that incorporates the optimal stepsize in the convex quadratic case.
A Majorize–Minimize Strategy for Subspace Optimization Applied to Image Restoration
"... © 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other w ..."
Abstract
-
Cited by 10 (2 self)
- Add to MetaCart
(Show Context)
© 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Abstract—This paper proposes accelerated subspace optimization methods in the context of image restoration. Subspace optimization methods belong to the class of iterative descent algorithms for unconstrained optimization. At each iteration of such methods, a stepsize vector allowing the best combination of several search directions is computed through a multidimensional search. It is usually obtained by an inner iterative second-order method ruled by a stopping criterion that guarantees the convergence of the outer algorithm. As an alternative, we propose an original multidimensional search strategy based on the majorize–minimize principle. It leads to a closed-form stepsize formula that ensures the convergence of the subspace algorithm whatever the number of inner iterations. The practical efficiency of the proposed scheme is illustrated in the context of edge-preserving image restoration. Index Terms—Conjugate gradient, image restoration, memory gradient, quadratic majorization, stepsize strategy, subspace optimization. I.
Robust estimation and wavelet thresholding in partial linear models
, 2006
"... This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable Gaussian distributed random errors. We present a wavelet thresholding based estimation procedure to e ..."
Abstract
-
Cited by 8 (1 self)
- Add to MetaCart
This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable Gaussian distributed random errors. We present a wavelet thresholding based estimation procedure to estimate the components of the partial linear model by establishing a connection between an l1-penalty based wavelet estimator of the nonparametric component and Huber’s M-estimation of a standard linear model with outliers. Some general results on the large sample properties of the estimates of both the parametric and the nonparametric part of the model are established. Simulations and a real example are used to illustrate the general results and to compare the proposed methodology with other methods available in the recent literature. Keywords: Semi-nonparametric models, partly linear models, wavelet thresholding, backfitting, M-estimation, penalized least-squares.
Sparse Signal Estimation by Maximally Sparse Convex Optimization
- IEEE TRANSACTIONS ON SIGNAL PROCESSING
, 2014
"... This paper addresses the problem of sparsity penalized least squares for applications in sparse signal processing, e.g. sparse deconvolution. This paper aims to induce sparsity more strongly than L1 norm regularization, while avoiding non-convex optimization. For this purpose, this paper describes ..."
Abstract
-
Cited by 8 (4 self)
- Add to MetaCart
This paper addresses the problem of sparsity penalized least squares for applications in sparse signal processing, e.g. sparse deconvolution. This paper aims to induce sparsity more strongly than L1 norm regularization, while avoiding non-convex optimization. For this purpose, this paper describes the design and use of non-convex penalty functions (regularizers) constrained so as to ensure the convexity of the total cost function, F, to be minimized. The method is based on parametric penalty functions, the parameters of which are constrained to ensure convexity of F. It is shown that optimal parameters can be obtained by semidefinite programming (SDP). This maximally sparse convex (MSC) approach yields maximally non-convex sparsity-inducing penalty functions constrained such that the total cost function, F, is convex. It is demonstrated that iterative MSC (IMSC) can yield solutions substantially more sparse than the standard convex sparsity-inducing approach, i.e., L1 norm minimization.