Results 1  10
of
55
Theorems for free!
 FUNCTIONAL PROGRAMMING LANGUAGES AND COMPUTER ARCHITECTURE
, 1989
"... From the type of a polymorphic function we can derive a theorem that it satisfies. Every function of the same type satisfies the same theorem. This provides a free source of useful theorems, courtesy of Reynolds' abstraction theorem for the polymorphic lambda calculus. ..."
Abstract

Cited by 380 (8 self)
 Add to MetaCart
(Show Context)
From the type of a polymorphic function we can derive a theorem that it satisfies. Every function of the same type satisfies the same theorem. This provides a free source of useful theorems, courtesy of Reynolds' abstraction theorem for the polymorphic lambda calculus.
ECC, an Extended Calculus of Constructions
, 1989
"... We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics ..."
Abstract

Cited by 91 (4 self)
 Add to MetaCart
We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics may be adequately formalized. It is shown that ECC is strongly normalizing and has other nice prooftheoretic properties. An !\GammaSet (realizability) model is described to show how the essential properties of the calculus can be captured settheoretically.
Provable Isomorphisms of Types
 MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE
, 1990
"... A constructive characterization is given of the isomorphisms which must hold in all models of the typed lambda calculus with surjective pairing. By the close relation between closed Cartesian categories and models of these calculi, we also produce a characterization of those isomorphisms which hold ..."
Abstract

Cited by 48 (8 self)
 Add to MetaCart
A constructive characterization is given of the isomorphisms which must hold in all models of the typed lambda calculus with surjective pairing. By the close relation between closed Cartesian categories and models of these calculi, we also produce a characterization of those isomorphisms which hold in all CCC's. By the correspondence between these calculi and proofs in intuitionistic positive propositional logic, we thus provide a characterization of equivalent formulae of this logic, where the definition of equivalence of terms depends on having "invertible" proofs between the two terms. Rittri (1989), on types as search keys in program libraries, provides an interesting example of use of these characterizations.
Fast and Loose Reasoning is Morally Correct
, 2006
"... Functional programmers often reason about programs as if they were written in a total language, expecting the results to carry over to nontotal (partial) languages. We justify such reasoning. ..."
Abstract

Cited by 38 (1 self)
 Add to MetaCart
Functional programmers often reason about programs as if they were written in a total language, expecting the results to carry over to nontotal (partial) languages. We justify such reasoning.
Domain theoretic models of polymorphism
 INF. COMPUT
, 1989
"... We give an illustration of a construction useful in producing and describing models of Girard and Reynolds' polymorphic λcalculus. The key unifying ideas are that of a Grothendieck fibration and the category of continuous sections associated with it, constructions used in indexed category theo ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
We give an illustration of a construction useful in producing and describing models of Girard and Reynolds' polymorphic λcalculus. The key unifying ideas are that of a Grothendieck fibration and the category of continuous sections associated with it, constructions used in indexed category theory; the universal types of the calculus are interpreted as the category of continuous sections of the fibration. As a major example a new model for the polymorphic λcalculus is presented. In it a type is interpreted as a Scott domain. In fact, understanding universal types of the polymorphic λcalculus as categories of continuous sections appears to be useful generally. For example, the technique also applies to the finitary projection model of Bruce and Longo, and a recent model of Girard. (Indeed the work here was inspired by Girard's and arose through trying to extend the construction of his model to Scott domains.) It is hoped that by pinpointing a key construction this paper will help towards a deeper understanding of models for the polymorphic λcalculus and the
Constructions, Inductive Types and Strong Normalization
, 1993
"... This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and typechecking, based on the equalityasjudgement presentation. We present a settheoretic ..."
Abstract

Cited by 35 (3 self)
 Add to MetaCart
This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and typechecking, based on the equalityasjudgement presentation. We present a settheoretic notion of model, CCstructures, and use this to give a new strong normalization proof based on a modification of the realizability interpretation. An extension of the core calculus by inductive types is investigated and we show, using the example of infinite trees, how the realizability semantics and the strong normalization argument can be extended to nonalgebraic inductive types. We emphasize that our interpretation is sound for large eliminations, e.g. allows the definition of sets by recursion. Finally we apply the extended calculus to a nontrivial problem: the formalization of the strong normalization argument for Girard's System F. This formal proof has been developed and checked using the...
Sets in Types, Types in Sets
 Proceedings of TACS'97
, 1997
"... . We present two mutual encodings, respectively of the Calculus of Inductive Constructions in ZermeloFraenkel set theory and the opposite way. More precisely, we actually construct two families of encodings, relating the number of universes in the type theory with the number of inaccessible cardina ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
(Show Context)
. We present two mutual encodings, respectively of the Calculus of Inductive Constructions in ZermeloFraenkel set theory and the opposite way. More precisely, we actually construct two families of encodings, relating the number of universes in the type theory with the number of inaccessible cardinals in the set theory. The main result is that both hierarchies of logical formalisms interleave w.r.t. expressive power and thus are essentially equivalent. Both encodings are quite elementary: type theory is interpreted in set theory through a generalization of Coquand 's simple proofirrelevance interpretation. Set theory is encoded in type theory using a variant of Aczel's encoding; we have formally checked this last part using the Coq proof assistant. 1 Introduction This work is an attempt towards better understanding of the expressiveness of powerful type theories. We here investigate the Calculus of Inductive Constructions (CIC); this formalism is, with some variants, the one implemen...
Programming With Types
 CORNELL UNIVERSITY
, 2002
"... Runtime type analysis is an increasingly important linguistic mechanism in modern programming languages. Language runtime systems use it to implement services such as accurate garbage collection, serialization, cloning and structural equality. Component frameworks rely on it to provide reflection m ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
(Show Context)
Runtime type analysis is an increasingly important linguistic mechanism in modern programming languages. Language runtime systems use it to implement services such as accurate garbage collection, serialization, cloning and structural equality. Component frameworks rely on it to provide reflection mechanisms so they may discover and interact with program interfaces dynamically. Runtime type analysis is also crucial for large, distributed systems that must be dynamically extended, because it allows those systems to check program invariants when new code and new forms of data are added. Finally, many generic userlevel algorithms for iteration, pattern matching, and unification can be defined through type analysis mechanisms. However, existing frameworks for runtime type analysis were designed for simple type systems. They do not scale well to the sophisticated type systems of modern and nextgeneration programming languages that include complex constructs such as firstclass abstract types, recursive types, objects, and type parameterization. In addition, facilities to support type analysis often require complicated
Parametric limits, in
 Proc. 19th Ann. IEEE Symp. on Logic in Comp. Sci., IEEE
"... We develop a categorical model of polymorphic lambda calculi using a notion called parametric limits, which extend the notion of limits in categories to reexive graphs of categories. We show that a number of parametric models of polymorphism can be captured in this way. We also axiomatize the struc ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
(Show Context)
We develop a categorical model of polymorphic lambda calculi using a notion called parametric limits, which extend the notion of limits in categories to reexive graphs of categories. We show that a number of parametric models of polymorphism can be captured in this way. We also axiomatize the structure of re
exive graphs needed for modelling parametric polymorphism based on ideas of brations, and show that it leads to proofs of representation results such as the initial algebra and nal coalgebra properties one expects in polymorphic lambda calculi.