Results 1  10
of
1,218
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 865 (3 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Support vector machines: Training and applications
 A.I. MEMO 1602, MIT A. I. LAB
, 1997
"... The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and MultiLayer Perc ..."
Abstract

Cited by 223 (3 self)
 Add to MetaCart
(Show Context)
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and MultiLayer Perceptron classifiers. The main idea behind the technique is to separate the classes with a surface that maximizes the margin between them. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle [23]. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Since Structural Risk Minimization is an inductive principle that aims at minimizing a bound on the generalization error of a model, rather than minimizing the Mean Square Error over the data set (as Empirical Risk Minimization methods do), training a SVM to obtain the maximum margin classi er requires a different objective function. This objective function is then optimized by solving a largescale quadratic programming problem with linear and box constraints. The problem is considered challenging, because the quadratic form is completely dense, so the memory
Sparse Permutation Invariant Covariance Estimation
 Electronic Journal of Statistics
, 2008
"... The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in highdimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lassotype penalty. We establish a rate of convergence in the Fro ..."
Abstract

Cited by 164 (8 self)
 Add to MetaCart
(Show Context)
The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in highdimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lassotype penalty. We establish a rate of convergence in the Frobenius norm as both data dimension p and sample size n are allowed to grow, and show that the rate depends explicitly on how sparse the true concentration matrix is. We also show that a correlationbased version of the method exhibits better rates in the operator norm. The estimator is required to be positive definite, but we avoid having to use semidefinite programming by reparameterizing the objective function
On the Use of NonStationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems with GA's
 In
, 1994
"... In this paper we discuss the use of nonstationary penalty functions to solve general nonlinear programming problems (NP ) using realvalued GAs. The nonstationary penalty is a function of the generation number; as the number of generations increases so does the penalty. Therefore, as the penalty i ..."
Abstract

Cited by 139 (7 self)
 Add to MetaCart
(Show Context)
In this paper we discuss the use of nonstationary penalty functions to solve general nonlinear programming problems (NP ) using realvalued GAs. The nonstationary penalty is a function of the generation number; as the number of generations increases so does the penalty. Therefore, as the penalty increases it puts more and more selective pressure on the GA to find a feasible solution. The ideas presented in this paper come from two basic areas: calculusbased nonlinear programming and simulated annealing. The nonstationary penalty methods are tested on four NP test cases and the effectiveness of these methods are reported.. 1 Introduction Constrained function optimization is an extremely important tool used in almost every facet of engineering, operations research, mathematics, and etc. Constrained optimization can be represented as a nonlinear programming problem. The general nonlinear programming problem is defined as follows: (NP ) minimize f(X) subject to (nonlinear and linear)...
The analysis of decomposition methods for support vector machines
 IEEE Transactions on Neural Networks
, 1999
"... Abstract. The decomposition method is currently one of the major methods for solving support vector machines. An important issue of this method is the selection of working sets. In this paper through the design of decomposition methods for boundconstrained SVM formulations we demonstrate that the w ..."
Abstract

Cited by 134 (21 self)
 Add to MetaCart
(Show Context)
Abstract. The decomposition method is currently one of the major methods for solving support vector machines. An important issue of this method is the selection of working sets. In this paper through the design of decomposition methods for boundconstrained SVM formulations we demonstrate that the working set selection is not a trivial task. Then from the experimental analysis we propose a simple selection of the working set which leads to faster convergences for difficult cases. Numerical experiments on different types of problems are conducted to demonstrate the viability of the proposed method.
Performance Animation from Lowdimensional Control Signals
 ACM Transactions on Graphics
, 2005
"... This paper introduces an approach to performance animation that employs video cameras and a small set of retroreflective markers to create a lowcost, easytouse system that might someday be practical for home use. The lowdimensional control signals from the user's performance are supplement ..."
Abstract

Cited by 129 (18 self)
 Add to MetaCart
This paper introduces an approach to performance animation that employs video cameras and a small set of retroreflective markers to create a lowcost, easytouse system that might someday be practical for home use. The lowdimensional control signals from the user's performance are supplemented by a database of prerecorded human motion. At run time, the system automatically learns a series of local models from a set of motion capture examples that are a close match to the marker locations captured by the cameras. These local models are then used to reconstruct the motion of the user as a fullbody animation. We demonstrate the power of this approach with realtime control of six different behaviors using two video cameras and a small set of retroreflective markers. We compare the resulting animation to animation from commercial motion capture equipment with a full set of markers.
Fast image recovery using variable splitting and constrained optimization
 IEEE Trans. Image Process
, 2010
"... Abstract—We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an `2 datafidelity term and a nonsmooth regularizer. This formulation allows both wavele ..."
Abstract

Cited by 126 (10 self)
 Add to MetaCart
(Show Context)
Abstract—We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an `2 datafidelity term and a nonsmooth regularizer. This formulation allows both waveletbased (with orthogonal or framebased representations) regularization or totalvariation regularization. Our approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is then addressed with an augmented Lagrangian method. The proposed algorithm is an instance of the socalled alternating direction method of multipliers, for which convergence has been proved. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is faster than the current state of the art methods. Index Terms—Augmented Lagrangian, compressive sensing, convex optimization, image reconstruction, image restoration,
An affine scaling methodology for best basis selection
 IEEE TRANS. SIGNAL PROCESSING
, 1999
"... A methodology is developed to derive algorithms for optimal basis selection by minimizing diversity measures proposed by Wickerhauser and Donoho. These measures include the pnormlike (`(p 1)) diversity measures and the Gaussian and Shannon entropies. The algorithm development methodology uses a f ..."
Abstract

Cited by 124 (21 self)
 Add to MetaCart
A methodology is developed to derive algorithms for optimal basis selection by minimizing diversity measures proposed by Wickerhauser and Donoho. These measures include the pnormlike (`(p 1)) diversity measures and the Gaussian and Shannon entropies. The algorithm development methodology uses a factored representation for the gradient and involves successive relaxation of the Lagrangian necessary condition. This yields algorithms that are intimately related to the Affine Scaling Transformation (AST) based methods commonly employed by the interior point approach to nonlinear optimization. The algorithms minimizing the `(p 1) diversity measures are equivalent to a recently developed class of algorithms called FOCal Underdetermined System Solver (FOCUSS). The general nature of the methodology provides a systematic approach for deriving this class of algorithms and a natural mechanism for extending them. It also facilitates a better understanding of the convergence behavior and a strengthening of the convergence results. The Gaussian entropy minimization algorithm is shown to be equivalent to a wellbehaved p =0normlike optimization algorithm. Computer experiments demonstrate that the pnormlike and the Gaussian entropy algorithms perform well, converging to sparse solutions. The Shannon entropy algorithm produces solutions that are concentrated but are shown to not converge to a fully sparse solution.
A Tutorial on Geometric Programming
"... A geometric program (GP) is a type of mathematical optimization problem characterized by objective and constraint functions that have a special form. Recently developed solution methods can solve even largescale GPs extremely efficiently and reliably; at the same time a number of practical problems ..."
Abstract

Cited by 123 (11 self)
 Add to MetaCart
A geometric program (GP) is a type of mathematical optimization problem characterized by objective and constraint functions that have a special form. Recently developed solution methods can solve even largescale GPs extremely efficiently and reliably; at the same time a number of practical problems, particularly in circuit design, have been found to be equivalent to (or well approximated by) GPs. Putting these two together, we get effective solutions for the practical problems. The basic approach in GP modeling is to attempt to express a practical problem, such as an engineering analysis or design problem, in GP format. In the best case, this formulation is exact; when this isn’t possible, we settle for an approximate formulation. This tutorial paper collects together in one place the basic background material needed to do GP modeling. We start with the basic definitions and facts, and some methods used to transform problems into GP format. We show how to recognize functions and problems compatible with GP, and how to approximate functions or data in a form compatible with GP (when this is possible). We give some simple and representative examples, and also describe some common extensions of GP, along with methods for solving (or approximately solving) them.