Results 1  10
of
710
GTM: The generative topographic mapping
 Neural Computation
, 1998
"... Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper ..."
Abstract

Cited by 361 (6 self)
 Add to MetaCart
Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of nonlinear latent variable model called the Generative Topographic Mapping for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used SelfOrganizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multiphase oil pipeline. Copyright c○MIT Press (1998). 1
Incremental Learning for Robust Visual Tracking
, 2008
"... Visual tracking, in essence, deals with nonstationary image streams that change over time. While most existing algorithms are able to track objects well in controlled environments, they usually fail in the presence of significant variation of the object’s appearance or surrounding illumination. On ..."
Abstract

Cited by 306 (18 self)
 Add to MetaCart
(Show Context)
Visual tracking, in essence, deals with nonstationary image streams that change over time. While most existing algorithms are able to track objects well in controlled environments, they usually fail in the presence of significant variation of the object’s appearance or surrounding illumination. One reason for such failures is that many algorithms employ fixed appearance models of the target. Such models are trained using only appearance data available before tracking begins, which in practice limits the range of appearances that are modeled, and ignores the large volume of information (such as shape changes or specific lighting conditions) that becomes available during tracking. In this paper, we present a tracking method that incrementally learns a lowdimensional subspace representation, efficiently adapting online to changes in the appearance of the target. The model update, based on incremental algorithms for principal component analysis, includes two important features: a method for correctly updating the sample mean, and a for
Probabilistic Matrix Factorization
"... Many existing approaches to collaborative filtering can neither handle very large datasets nor easily deal with users who have very few ratings. In this paper we present the Probabilistic Matrix Factorization (PMF) model which scales linearly with the number of observations and, more importantly, pe ..."
Abstract

Cited by 287 (5 self)
 Add to MetaCart
Many existing approaches to collaborative filtering can neither handle very large datasets nor easily deal with users who have very few ratings. In this paper we present the Probabilistic Matrix Factorization (PMF) model which scales linearly with the number of observations and, more importantly, performs well on the large, sparse, and very imbalanced Netflix dataset. We further extend the PMF model to include an adaptive prior on the model parameters and show how the model capacity can be controlled automatically. Finally, we introduce a constrained version of the PMF model that is based on the assumption that users who have rated similar sets of movies are likely to have similar preferences. The resulting model is able to generalize considerably better for users with very few ratings. When the predictions of multiple PMF models are linearly combined with the predictions of Restricted Boltzmann Machines models, we achieve an error rate of 0.8861, that is nearly 7 % better than the score of Netflix’s own system. 1
Independent Factor Analysis
 Neural Computation
, 1999
"... We introduce the independent factor analysis (IFA) method for recovering independent hidden sources from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal component analysis (PCA), and independent component analysis (ICA), and can handle not only square no ..."
Abstract

Cited by 277 (9 self)
 Add to MetaCart
(Show Context)
We introduce the independent factor analysis (IFA) method for recovering independent hidden sources from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal component analysis (PCA), and independent component analysis (ICA), and can handle not only square noiseless mixing, but also the general case where the number of mixtures differs from the number of sources and the data are noisy. IFA is a twostep procedure. In the first step, the source densities, mixing matrix and noise covariance are estimated from the observed data by maximum likelihood. For this purpose we present an expectationmaximization (EM) algorithm, which performs unsupervised learning of an associated probabilistic model of the mixing situation. Each source in our model is described by a mixture of Gaussians, thus all the probabilistic calculations can be performed analytically. In the second step, the sources are reconstructed from the observed data by an optimal nonlinear ...
A Variational Bayesian Framework for Graphical Models
 In Advances in Neural Information Processing Systems 12
, 2000
"... This paper presents a novel practical framework for Bayesian model averaging and model selection in probabilistic graphical models. Our approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner. These posteriors ..."
Abstract

Cited by 267 (7 self)
 Add to MetaCart
(Show Context)
This paper presents a novel practical framework for Bayesian model averaging and model selection in probabilistic graphical models. Our approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner. These posteriors fall out of a freeform optimization procedure, which naturally incorporates conjugate priors. Unlike in large sample approximations, the posteriors are generally nonGaussian and no Hessian needs to be computed. Predictive quantities are obtained analytically. The resulting algorithm generalizes the standard Expectation Maximization algorithm, and its convergence is guaranteed. We demonstrate that this approach can be applied to a large class of models in several domains, including mixture models and source separation. 1 Introduction A standard method to learn a graphical model 1 from data is maximum likelihood (ML). Given a training dataset, ML estimates a single optimal value f...
Gaussian process latent variable models for visualisation of high dimensional data
 Adv. in Neural Inf. Proc. Sys
, 2004
"... We introduce a variational inference framework for training the Gaussian process latent variable model and thus performing Bayesian nonlinear dimensionality reduction. This method allows us to variationally integrate out the input variables of the Gaussian process and compute a lower bound on the ex ..."
Abstract

Cited by 230 (13 self)
 Add to MetaCart
(Show Context)
We introduce a variational inference framework for training the Gaussian process latent variable model and thus performing Bayesian nonlinear dimensionality reduction. This method allows us to variationally integrate out the input variables of the Gaussian process and compute a lower bound on the exact marginal likelihood of the nonlinear latent variable model. The maximization of the variational lower bound provides a Bayesian training procedure that is robust to overfitting and can automatically select the dimensionality of the nonlinear latent space. We demonstrate our method on real world datasets. The focus in this paper is on dimensionality reduction problems, but the methodology is more general. For example, our algorithm is immediately applicable for training Gaussian process models in the presence of missing or uncertain inputs. 1
Probabilistic nonlinear principal component analysis with Gaussian process latent variable models
 Journal of Machine Learning Research
, 2005
"... Summarising a high dimensional data set with a low dimensional embedding is a standard approach for exploring its structure. In this paper we provide an overview of some existing techniques for discovering such embeddings. We then introduce a novel probabilistic interpretation of principal component ..."
Abstract

Cited by 229 (24 self)
 Add to MetaCart
(Show Context)
Summarising a high dimensional data set with a low dimensional embedding is a standard approach for exploring its structure. In this paper we provide an overview of some existing techniques for discovering such embeddings. We then introduce a novel probabilistic interpretation of principal component analysis (PCA) that we term dual probabilistic PCA (DPPCA). The DPPCA model has the additional advantage that the linear mappings from the embedded space can easily be nonlinearised through Gaussian processes. We refer to this model as a Gaussian process latent variable model (GPLVM). Through analysis of the GPLVM objective function, we relate the model to popular spectral techniques such as kernel PCA and multidimensional scaling. We then review a practical algorithm for GPLVMs in the context of large data sets and develop it to also handle discrete valued data and missing attributes. We demonstrate the model on a range of realworld and artificially generated data sets.
A Survey of Collaborative Filtering Techniques
, 2009
"... As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenge ..."
Abstract

Cited by 216 (0 self)
 Add to MetaCart
As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenges, such as data sparsity, scalability, synonymy, gray sheep, shilling attacks, privacy protection, etc., and their possible solutions. We then present three main categories of CF techniques: memorybased, modelbased, and hybrid CF algorithms (that combine CF with other recommendation techniques), with examples for representative algorithms of each category, and analysis of their predictive performance and their ability to address the challenges. From basic techniques to the stateoftheart, we attempt to present a comprehensive survey for CF techniques, which can be served as a roadmap for research and practice in this area.
Generalized principal component analysis (GPCA)
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2003
"... This paper presents an algebrogeometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a ..."
Abstract

Cited by 206 (36 self)
 Add to MetaCart
(Show Context)
This paper presents an algebrogeometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point. When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a highdimensional space and with an unknown number of subspaces are also presented. Our experiments on lowdimensional data show that GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative techniques such as Ksubspaces and Expectation Maximization. We also present applications of GPCA to computer vision problems such as face clustering, temporal video segmentation, and 3D motion segmentation from point correspondences in multiple affine views.