Results 1 - 10
of
3,284
PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES
, 1962
"... Upper bounds are derived for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt. It is assumed that the range of each summand of S is bounded or bounded above. The bounds for Pr(S-ES> nt) depend only on the endpoints of the ranges of the s ..."
Abstract
-
Cited by 2215 (2 self)
- Add to MetaCart
Upper bounds are derived for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt. It is assumed that the range of each summand of S is bounded or bounded above. The bounds for Pr(S-ES> nt) depend only on the endpoints of the ranges of the smumands and the mean, or the mean and the variance of S. These results are then used to obtain analogous inequalities for certain sums of dependent random variables such as U statistics and the sum of a random sample without replacement from a finite population.
Wide-Area Traffic: The Failure of Poisson Modeling
- IEEE/ACM TRANSACTIONS ON NETWORKING
, 1995
"... Network arrivals are often modeled as Poisson processes for analytic simplicity, even though a number of traffic studies have shown that packet interarrivals are not exponentially distributed. We evaluate 24 wide-area traces, investigating a number of wide-area TCP arrival processes (session and con ..."
Abstract
-
Cited by 1775 (24 self)
- Add to MetaCart
Network arrivals are often modeled as Poisson processes for analytic simplicity, even though a number of traffic studies have shown that packet interarrivals are not exponentially distributed. We evaluate 24 wide-area traces, investigating a number of wide-area TCP arrival processes (session and connection arrivals, FTP data connection arrivals within FTP sessions, and TELNET packet arrivals) to determine the error introduced by modeling them using Poisson processes. We find that user-initiated TCP session arrivals, such as remotelogin and file-transfer, are well-modeled as Poisson processes with fixed hourly rates, but that other connection arrivals deviate considerably from Poisson; that modeling TELNET packet interarrivals as exponential grievously underestimates the burstiness of TELNET traffic, but using the empirical Tcplib [Danzig et al, 1992] interarrivals preserves burstiness over many time scales; and that FTP data connection arrivals within FTP sessions come bunched into “connection bursts,” the largest of which are so large that they completely dominate FTP data traffic. Finally, we offer some results regarding how our findings relate to the possible self-similarity of widearea traffic.
Mobility increases the capacity of ad-hoc wireless networks
- IEEE/ACM TRANSACTIONS ON NETWORKING
, 2002
"... The capacity of ad-hoc wireless networks is constrained by the mutual interference of concurrent transmissions between nodes. We study a model of an ad-hoc network where n nodes communicate in random source-destination pairs. These nodes are assumed to be mobile. We examine the per-session throughpu ..."
Abstract
-
Cited by 1220 (5 self)
- Add to MetaCart
The capacity of ad-hoc wireless networks is constrained by the mutual interference of concurrent transmissions between nodes. We study a model of an ad-hoc network where n nodes communicate in random source-destination pairs. These nodes are assumed to be mobile. We examine the per-session throughput for applications with loose delay constraints, such that the topology changes over the time-scale of packet delivery. Under this assumption, the per-user throughput can increase dramatically when nodes are mobile rather than fixed. This improvement can be achieved by exploiting node mobility as a type of multiuser diversity.
Class-Based n-gram Models of Natural Language
- Computational Linguistics
, 1992
"... We address the problem of predicting a word from previous words in a sample of text. In particular we discuss n-gram models based on calsses of words. We also discuss several statistical algoirthms for assigning words to classes based on the frequency of their co-occurrence with other words. We find ..."
Abstract
-
Cited by 986 (5 self)
- Add to MetaCart
We address the problem of predicting a word from previous words in a sample of text. In particular we discuss n-gram models based on calsses of words. We also discuss several statistical algoirthms for assigning words to classes based on the frequency of their co-occurrence with other words. We find that we are able to extract classes that have the flavor of either syntactically based groupings or semantically based groupings, depending on the nature of the underlying statistics.
Self-Similarity Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level
- IEEE/ACM TRANSACTIONS ON NETWORKING
, 1997
"... A number of recent empirical studies of traffic measurements from a variety of working packet networks have convincingly demonstrated that actual network traffic is self-similar or long-range dependent in nature (i.e., bursty over a wide range of time scales) -- in sharp contrast to commonly made tr ..."
Abstract
-
Cited by 743 (24 self)
- Add to MetaCart
A number of recent empirical studies of traffic measurements from a variety of working packet networks have convincingly demonstrated that actual network traffic is self-similar or long-range dependent in nature (i.e., bursty over a wide range of time scales) -- in sharp contrast to commonly made traffic modeling assumptions. In this paper, we provide a plausible physical explanation for the occurrence of self-similarity in LAN traffic. Our explanation is based on new convergence results for processes that exhibit high variability (i.e., infinite variance) and is supported by detailed statistical analyses of real-time traffic measurements from Ethernet LAN's at the level of individual sources. This paper is an extended version of [53] and differs from it in significant ways. In particular, we develop here the mathematical results concerning the superposition of strictly alternating ON/OFF sources. Our key mathematical result states that the superposition of many ON/OFF sources (also k...
Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options
, 1993
"... ..."
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of non-negative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract
-
Cited by 507 (8 self)
- Add to MetaCart
Given a sequence of non-negative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 then almost surely all components in such graphs are small. We can apply these results to G n;p ; G n;M , and other well-known models of random graphs. There are also applications related to the chromatic number of sparse random graphs.
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract
-
Cited by 506 (0 self)
- Add to MetaCart
(Show Context)
We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the family of radial basis kernels. It can also be used to define kernels in the form of joint Gibbs probability distributions. Kernels can be built from hidden Markov random elds, generalized regular expressions, pair-HMMs, or ANOVA decompositions. Uses of the method lead to open problems involving the theory of infinitely divisible positive definite functions. Fundamentals of this theory and the theory of reproducing kernel Hilbert spaces are reviewed and applied in establishing the validity of the method.