Results 1 - 10
of
120
Mining Concept-Drifting Data Streams Using Ensemble Classifiers
, 2003
"... Recently, mining data streams with concept drifts for actionable insights has become an important and challenging task for a wide range of applications including credit card fraud protection, target marketing, network intrusion detection, etc. Conventional knowledge discovery tools are facing two ch ..."
Abstract
-
Cited by 280 (37 self)
- Add to MetaCart
Recently, mining data streams with concept drifts for actionable insights has become an important and challenging task for a wide range of applications including credit card fraud protection, target marketing, network intrusion detection, etc. Conventional knowledge discovery tools are facing two challenges, the overwhelming volume of the streaming data, and the concept drifts. In this paper, we propose a general framework for mining concept-drifting data streams using weighted ensemble classifiers. We train an ensemble of classification models, such as C4.5, RIPPER, naive Bayesian, etc., from sequential chunks of the data stream. The classifiers in the ensemble are judiciously weighted based on their expected classification accuracy on the test data under the time-evolving environment. Thus, the ensemble approach improves both the efficiency in learning the model and the accuracy in performing classification. Our empirical study shows that the proposed methods have substantial advantage over single-classifier approaches in prediction accuracy, and the ensemble framework is effective for a variety of classification models.
Mondrian multidimensional k-anonymity
- in Proc. 22nd ICDE. IEEE
"... K-Anonymity has been proposed as a mechanism for privacy protection in microdata publishing, and numerous recoding “models ” have been considered for achieving k-anonymity. This paper proposes a new multidimensional model, which provides an additional degree of flexibility not seen in previous (sing ..."
Abstract
-
Cited by 255 (5 self)
- Add to MetaCart
K-Anonymity has been proposed as a mechanism for privacy protection in microdata publishing, and numerous recoding “models ” have been considered for achieving k-anonymity. This paper proposes a new multidimensional model, which provides an additional degree of flexibility not seen in previous (single-dimensional) approaches. Often this flexibility leads to higher-quality anonymizations, as measured both by general-purpose metrics, as well as more specific notions of query answerability. In this paper, we prove that optimal multidimensional anonymization is NP-hard (like previous k-anonymity models). However, we introduce a simple, scalable, greedy algorithm that produces anonymizations that are a constantfactor approximation of optimal. Experimental results show that this greedy algorithm frequently leads to more desirable anonymizations than two optimal exhaustive-search algorithms for single-dimensional models. 1.
CPAR: Classification based on Predictive Association Rules
, 2003
"... Recent studies in data mining have proposed a new classification approach, called associative classification, which, according to several reports, such as [7, 6], achieves higher classification accuracy than traditional classification approaches such as C4.5. However, the approach also su#ers from t ..."
Abstract
-
Cited by 199 (3 self)
- Add to MetaCart
(Show Context)
Recent studies in data mining have proposed a new classification approach, called associative classification, which, according to several reports, such as [7, 6], achieves higher classification accuracy than traditional classification approaches such as C4.5. However, the approach also su#ers from two major deficiencies: (1) it generates a very large number of association rules, which leads to high processing overhead; and (2) its confidence-based rule evaluation measure may lead to overfitting.
BOAT -- Optimistic Decision Tree Construction
, 1999
"... Classification is an important data mining problem. Given a training database of records, each tagged with a class label, the goal of classification is to build a concise model that can be used to predict the class label of future, unlabeled records. A very popular class of classifiers are decision ..."
Abstract
-
Cited by 117 (2 self)
- Add to MetaCart
(Show Context)
Classification is an important data mining problem. Given a training database of records, each tagged with a class label, the goal of classification is to build a concise model that can be used to predict the class label of future, unlabeled records. A very popular class of classifiers are decision trees. All current algorithms to construct decision trees, including all main-memory algorithms, make one scan over the training database per level of the tree. We introduce a new algorithm (BOAT) for decision tree construction that improves upon earlier algorithms in both performance and functionality. BOAT constructs several levels of the tree in only two scans over the training database, resulting in an average performance gain of 300% over previous work. The key to this performance improvement is a novel optimistic approach to tree construction in which we construct an initial tree using a small subset of the data and refine it to arrive at the final tree. We guarantee that any differen...
PUBLIC: A decision tree classifier that integrates building and pruning
- Proceedings of the 24th VLDB Conference
, 1998
"... Abstract. Classification is an important problem in data mining. Given a database of records, each with a class label, a classifier generates a concise and meaningful description for each class that can be used to classify subsequent records. A number of popular classifiers construct decision trees ..."
Abstract
-
Cited by 77 (5 self)
- Add to MetaCart
(Show Context)
Abstract. Classification is an important problem in data mining. Given a database of records, each with a class label, a classifier generates a concise and meaningful description for each class that can be used to classify subsequent records. A number of popular classifiers construct decision trees to generate class models. These classifiers first build a decision tree and then prune subtrees from the decision tree in a subsequent pruning phase to improve accuracy and prevent “overfitting”. Generating the decision tree in two distinct phases could result in a substantial amount of wasted effort since an entire subtree constructed in the first phase may later be pruned in the next phase. In this paper, we propose PUBLIC, an improved decision tree classifier that integrates the second “pruning ” phase with the initial “building” phase. In PUBLIC, a node is not expanded during the building phase, if it is determined that it will be pruned during the subsequent pruning phase. In order to make this determination for a node, before it is expanded, PUBLIC computes a lower bound on the minimum cost subtree rooted at the node. This estimate is then used by PUBLIC to identify the nodes that are certain to be pruned, and for such nodes, not expend effort on splitting them. Experimental results with real-life as well as synthetic data sets demonstrate the effectiveness of PUBLIC’s integrated approach which has the ability to deliver substantial performance improvements. Keywords: data mining, classification, decision tree
CrossMine: Efficient Classification Across Multiple Database Relations
- In Proc. 2004 Int. Conf. on Data Engineering (ICDE’04), Boston,MA
, 2004
"... Most of today's structured data is stored in relational databases. Such a database consists of multiple relations which are linked together conceptually via entity-relationship links in the design of relational database schemas. Multi-relational classification can be widely used in many discipl ..."
Abstract
-
Cited by 72 (12 self)
- Add to MetaCart
(Show Context)
Most of today's structured data is stored in relational databases. Such a database consists of multiple relations which are linked together conceptually via entity-relationship links in the design of relational database schemas. Multi-relational classification can be widely used in many disciplines, such as financial decision making, medical research, and geographical applications. However, most classification approaches only work on single "flat" data relations. It is usually difficult to convert multiple relations into a single flat relation without either introducing huge, undesirable "universal relation" or losing essential information. Previous works using Inductive Logic Programming approaches (recently also known as Relational Mining) have proven effective with high accuracy in multi-relational classification. Unfortunately, they suffer from poor scalability w.r.t. the number of relations and the number of attributes in databases.
Workload-aware Anonymization
, 2006
"... Protecting data privacy is an important problem in microdata distribution. Anonymization algorithms typically aim to protect individual privacy, with minimal impact on the quality of the resulting data. While the bulk of previous work has measured quality through one-size-fits-all measures, we argue ..."
Abstract
-
Cited by 71 (2 self)
- Add to MetaCart
Protecting data privacy is an important problem in microdata distribution. Anonymization algorithms typically aim to protect individual privacy, with minimal impact on the quality of the resulting data. While the bulk of previous work has measured quality through one-size-fits-all measures, we argue that quality is best judged with respect to the workload for which the data will ultimately be used. This paper provides a suite of anonymization algorithms that produce an anonymous view based on a target class of workloads, consisting of one or more data mining tasks, as well as selection predicates. An extensive experimental evaluation indicates that this approach is often more effective than previous anonymization techniques.
Clustering Through Decision Tree Construction
- In SIGMOD-00
, 2000
"... this paper, we propose a novel clustering technique, which is based on a supervised learning technique called decision tree construction. The new technique is able to overcome many of these shortcomings. The key idea is to use a decision tree to partition the data space into cluster and empty (spars ..."
Abstract
-
Cited by 62 (0 self)
- Add to MetaCart
(Show Context)
this paper, we propose a novel clustering technique, which is based on a supervised learning technique called decision tree construction. The new technique is able to overcome many of these shortcomings. The key idea is to use a decision tree to partition the data space into cluster and empty (sparse) regions at different levels of details. The technique is able to find "natural" clusters in large high dimensional spaces efficiently. It is suitable for clustering in the full dimensional space as well as in subspaces. It also provides comprehensible descriptions of clusters. Experiment results on both synthetic data and real-life data show that the technique is effective and also scales well for large high dimensional datasets.
A Novel Evolutionary Data Mining Algorithm With Applications to Churn Prediction
, 2003
"... Classification is an important topic in data mining research. Given a set of data records, each of which belongs to one of a number of predefined classes, the classification problem is concerned with the discovery of classification rules that can allow records with unknown class membership to be cor ..."
Abstract
-
Cited by 57 (4 self)
- Add to MetaCart
Classification is an important topic in data mining research. Given a set of data records, each of which belongs to one of a number of predefined classes, the classification problem is concerned with the discovery of classification rules that can allow records with unknown class membership to be correctly classified. Many algorithms have been developed to mine large data sets for classification models and they have been shown to be very effective. However, when it comes to determining the likelihood of each classification made, many of them are not designed with such purpose in mind. For this, they are not readily applicable to such problem as churn prediction. For such an application, the goal is not only to predict whether or not a subscriber would switch from one carrier to another, it is also important that the likelihood of the subscriber's doing so be predicted. The reason for this is that a carrier can then choose to provide special personalized offer and services to those subscribers who are predicted with higher likelihood to churn. Given its importance, we propose a new data mining algorithm, called data mining by evolutionary learning (DMEL), to handle classification problems of which the accuracy of each predictions made has to be estimated. In performing its tasks, DMEL searches through the possible rule space using an evolutionary approach that has the following characteristics: 1) the evolutionary process begins with the generation of an initial set of first-order rules (i.e., rules with one conjunct/condition) using a probabilistic induction technique and based on these rules, rules of higher order (two or more conjuncts) are obtained iteratively; 2) when identifying interesting rules, an objective interestingness measure is used; 3) the fitness of a ch...
Good Practice in Large-Scale Learning for Image Classification
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI)
, 2013
"... We benchmark several SVM objective functions for large-scale image classification. We consider one-vs-rest, multi-class, ranking, and weighted approximate ranking SVMs. A comparison of online and batch methods for optimizing the objectives shows that online methods perform as well as batch methods i ..."
Abstract
-
Cited by 53 (6 self)
- Add to MetaCart
We benchmark several SVM objective functions for large-scale image classification. We consider one-vs-rest, multi-class, ranking, and weighted approximate ranking SVMs. A comparison of online and batch methods for optimizing the objectives shows that online methods perform as well as batch methods in terms of classification accuracy, but with a significant gain in training speed. Using stochastic gradient descent, we can scale the training to millions of images and thousands of classes. Our experimental evaluation shows that ranking-based algorithms do not outperform the one-vs-rest strategy when a large number of training examples are used. Furthermore, the gap in accuracy between the different algorithms shrinks as the dimension of the features increases. We also show that learning through cross-validation the optimal rebalancing of positive and negative examples can result in a significant improvement for the one-vs-rest strategy. Finally, early stopping can be used as an effective regularization strategy when training with online algorithms. Following these “good practices”, we were able to improve the state-of-the-art on a large subset of 10K classes and 9M images of ImageNet from 16.7 % Top-1 accuracy to 19.1%.