Results 1 - 10
of
227
A bayesian hierarchical model for learning natural scene categories
- In CVPR
, 2005
"... We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each region ..."
Abstract
-
Cited by 948 (15 self)
- Add to MetaCart
(Show Context)
We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each region is represented as part of a “theme”. In previous work, such themes were learnt from hand-annotations of experts, while our method learns the theme distributions as well as the codewords distribution over the themes without supervision. We report satisfactory categorization performances on a large set of 13 categories of complex scenes. 1.
Image retrieval: ideas, influences, and trends of the new age
- ACM COMPUTING SURVEYS
, 2008
"... We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger ass ..."
Abstract
-
Cited by 485 (13 self)
- Add to MetaCart
(Show Context)
We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.
Image Categorization by Learning and Reasoning with Regions
- Journal of Machine Learning Research
, 2004
"... Designing computer programs to automatically categorize images using low-level features is a challenging research topic in computer vision. In this paper, we present a new learning technique, which extends Multiple-Instance Learning (MIL), and its application to the problem of region-based image cat ..."
Abstract
-
Cited by 195 (11 self)
- Add to MetaCart
Designing computer programs to automatically categorize images using low-level features is a challenging research topic in computer vision. In this paper, we present a new learning technique, which extends Multiple-Instance Learning (MIL), and its application to the problem of region-based image categorization. Images are viewed as bags, each of which contains a number of instances corresponding to regions obtained from image segmentation. The standard MIL problem assumes that a bag is labeled positive if at least one of its instances is positive; otherwise, the bag is negative.
A survey of content-based image retrieval with high-level semantics
, 2007
"... In order to improve the retrieval accuracy of content-based image retrieval systems, research focus has been shifted from designing sophisticated low-level feature extraction algorithms to reducing the ‘semantic gap ’ between the visual features and the richness of human semantics. This paper attemp ..."
Abstract
-
Cited by 150 (5 self)
- Add to MetaCart
In order to improve the retrieval accuracy of content-based image retrieval systems, research focus has been shifted from designing sophisticated low-level feature extraction algorithms to reducing the ‘semantic gap ’ between the visual features and the richness of human semantics. This paper attempts to provide a comprehensive survey of the recent technical achievements in high-level semantic-based image retrieval. Major recent publications are included in this survey covering different aspects of the research in this area, including low-level image feature extraction, similarity measurement, and deriving high-level semantic features. We identify five major categories of the state-of-the-art techniques in narrowing down the ‘semantic gap’: (1) using object ontology to define high-level concepts; (2) using machine learning methods to associate low-level features with query concepts; (3) using relevance feedback to learn users’ intention; (4) generating semantic template to support high-level image retrieval; (5) fusing the evidences from HTML text and the visual content of images for WWW image retrieval. In addition, some other related issues such as image test bed and retrieval performance evaluation are also discussed. Finally, based on existing technology and the demand from real-world applications, a few promising future research directions are suggested.
Modeling scenes with local descriptors and latent aspects
- In Proc. of IEEE Int. Conf. on Computer Vision
, 2005
"... We present a new approach to model visual scenes in image collections, based on local invariant features and probabilistic latent space models. Our formulation provides answers to three open questions:(1) whether the invariant local features are suitable for scene (rather than object) classification ..."
Abstract
-
Cited by 104 (13 self)
- Add to MetaCart
(Show Context)
We present a new approach to model visual scenes in image collections, based on local invariant features and probabilistic latent space models. Our formulation provides answers to three open questions:(1) whether the invariant local features are suitable for scene (rather than object) classification; (2) whether unsupervised latent space models can be used for feature extraction in the classification task; and (3) whether the latent space formulation can discover visual co-occurrence patterns, motivating novel approaches for image organization and segmentation. Using a 9500-image dataset, our approach is validated on each of these issues. First, we show with extensive experiments on binary and multi-class scene classification tasks, that a bag-of-visterm representation, derived from local invariant descriptors, consistently outperforms state-of-theart approaches. Second, we show that Probabilistic Latent Semantic Analysis (PLSA) generates a compact scene representation, discriminative for accurate classification, and significantly more robust when less training data are available. Third, we have exploited the ability of PLSA to automatically extract visually meaningful aspects, to propose new algorithms for aspect-based image ranking and context-sensitive image segmentation. 1.
Content-based image retrieval: approaches and trends of the new age
- In Proceedings ACM International Workshop on Multimedia Information Retrieval
, 2005
"... The last decade has witnessed great interest in research on content-based image retrieval. This has paved the way for a large number of new techniques and systems, and a growing interest in associated fields to support such systems. Likewise, digital imagery has expanded its horizon in many directio ..."
Abstract
-
Cited by 91 (3 self)
- Add to MetaCart
(Show Context)
The last decade has witnessed great interest in research on content-based image retrieval. This has paved the way for a large number of new techniques and systems, and a growing interest in associated fields to support such systems. Likewise, digital imagery has expanded its horizon in many directions, resulting in an explosion in the volume of image data required to be organized. In this paper, we discuss some of the key contributions in the current decade related to image retrieval and automated image annotation, spanning 120 references. We also discuss some of the key challenges involved in the adaptation of existing image retrieval techniques to build useful systems that can handle real-world data. We conclude with a study on the trends in volume and impact of publications in the field with respect to venues/journals and sub-topics.
Learning Similarity Measure for Natural Image Retrieval With Relevance Feedback
- IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2002
"... A new scheme of learning similarity measure is proposed for content-based image retrieval (CBIR). It learns a boundary that separates the images in the database into two clusters. Images inside the boundary are ranked by their Euclidean distances to the query. The scheme is called constrained simila ..."
Abstract
-
Cited by 83 (5 self)
- Add to MetaCart
A new scheme of learning similarity measure is proposed for content-based image retrieval (CBIR). It learns a boundary that separates the images in the database into two clusters. Images inside the boundary are ranked by their Euclidean distances to the query. The scheme is called constrained similarity measure (CSM), which not only takes into consideration the perceptual similarity between images, but also significantly improves the retrieval performance of the Euclidean distance measure. Two techniques, support vector machine (SVM) and AdaBoost from machine learning, are utilized to learn the boundary. They are compared to see their differences in boundary learning. The positive and negative examples used to learn the boundary are provided by the user with relevance feedback. The CSM metric is evaluated in a large database of 10 009 natural images with an accurate ground truth. Experimental results demonstrate the usefulness and effectiveness of the proposed similarity measure for image retrieval.
What do we perceive in a glance of a real-world scene
- J Vision
"... What do we see when we glance at a natural scene and how does it change as the glance becomes longer? We asked naive subjects to report in a free-form format what they saw when looking at briefly presented real-life photographs. Our subjects received no specific information as to the content of each ..."
Abstract
-
Cited by 78 (9 self)
- Add to MetaCart
(Show Context)
What do we see when we glance at a natural scene and how does it change as the glance becomes longer? We asked naive subjects to report in a free-form format what they saw when looking at briefly presented real-life photographs. Our subjects received no specific information as to the content of each stimulus. Thus, our paradigm differs from previous studies where subjects were cued before a picture was presented and/or were probed with multiple-choice questions. In the first stage, 90 novel grayscale photographs were foveally shown to a group of 22 native-English-speaking subjects. The presentation time was chosen at random from a set of seven possible times (from 27 to 500 ms). A perceptual mask followed each photograph immediately. After each presentation, subjects reported what they had just seen as completely and truthfully as possible. In the second stage, another group of naive individuals was instructed to score each of the descriptions produced by the subjects in the first stage. Individual scores were assigned to more than a hundred different attributes. We show that within a single glance, much object- and scene-level information is perceived by human subjects. The richness of our perception, though, seems asymmetrical. Subjects tend to have a propensity toward perceiving natural scenes as being outdoor rather than indoor. The reporting of sensory- or feature-level information of a scene (such as shading and shape) consistently precedes the reporting of the semantic-level information. But once subjects recognize more semantic-level
CLUE: Cluster-based Retrieval of Images by Unsupervised Learning
- IEEE Transactions on Image Processing
, 2003
"... In a typical content-based image retrieval (CBIR) system, query results are a set of images sorted by feature similarities with respect to the query. However, images with high feature similarities to the query may be very di#erent from the query in terms of semantics. This discrepancy between low-le ..."
Abstract
-
Cited by 63 (3 self)
- Add to MetaCart
(Show Context)
In a typical content-based image retrieval (CBIR) system, query results are a set of images sorted by feature similarities with respect to the query. However, images with high feature similarities to the query may be very di#erent from the query in terms of semantics. This discrepancy between low-level features and high-level concepts is known as the semantic gap. This paper introduces a novel image retrieval scheme, CLUster-based rEtrieval of images by unsupervised learning (CLUE), which attempts to tackle the semantic gap problem based on a hypothesis that images of the same semantics are similar in a way, images of di#erent semantics are di#erent in their own ways. CLUE attempts to capture semantic concepts by learning the way that images of the same semantics are similar and retrieving image clusters instead of a set of ordered images. Clustering in CLUE is dynamic. In particular, clusters formed depend on which images are retrieved in response to the query. Therefore, the clusters give the algorithm as well as the users semantic relevant clues as to where to navigate. CLUE is a general approach that can be combined with any real-valued symmetric similarity measure (metric or nonmetric). Thus it may be embedded in many current CBIR systems. An experimental image retrieval system using CLUE has been implemented. The performance of the system is evaluated on a database of about 60, 000 images from COREL. Empirical results demonstrate improved performance compared with a typical CBIR system using the same image similarity measure. In addition, preliminary results on images returned by Google's Image Search reveal the potential of applying CLUE to real world image data and integrating CLUE as a part of the interface for keyword-based image retrieval systems.