Results 1 -
7 of
7
A semantics-based approach to malware detection
- PROCEEDINGS OF THE 34TH ACM SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES, POPL 2007, ACM (2007) 377–388
, 2007
"... Malware detection is a crucial aspect of software security. Current malware detectors work by checking for “signatures,” which attempt to capture (syntactic) characteristics of the machine-level byte sequence of the malware. This reliance on a syntactic approach makes such detectors vulnerable to co ..."
Abstract
-
Cited by 43 (3 self)
- Add to MetaCart
(Show Context)
Malware detection is a crucial aspect of software security. Current malware detectors work by checking for “signatures,” which attempt to capture (syntactic) characteristics of the machine-level byte sequence of the malware. This reliance on a syntactic approach makes such detectors vulnerable to code obfuscations, increasingly used by malware writers, that alter syntactic properties of the malware byte sequence without significantly affecting their execution behavior. This paper takes the position that the key to malware identification lies in their semantics. It proposes a semantics-based framework for reasoning about malware detectors and proving properties such as soundness and completeness of these detectors. Our approach uses a trace semantics to characterize the behaviors of malware as well as the program being checked for infection, and uses abstract interpretation to “hide” irrelevant aspects of these behaviors. As a concrete application of our approach, we show that the semantics-aware malware detector proposed by Christodorescu et al. is complete with respect to a number of common obfuscations used by malware writers.
Opcode sequences as representation of executables for data-mining-based unknown malware detection
- INFORMATION SCIENCES 227
, 2013
"... Malware can be defined as any type of malicious code that has the potential to harm a computer or network. The volume of malware is growing faster every year and poses a serious global security threat. Consequently, malware detection has become a critical topic in computer security. Currently, signa ..."
Abstract
-
Cited by 12 (0 self)
- Add to MetaCart
(Show Context)
Malware can be defined as any type of malicious code that has the potential to harm a computer or network. The volume of malware is growing faster every year and poses a serious global security threat. Consequently, malware detection has become a critical topic in computer security. Currently, signature-based detection is the most widespread method used in commercial antivirus. In spite of the broad use of this method, it can detect malware only after the malicious executable has already caused damage and provided the malware is adequately documented. Therefore, the signature-based method consistently fails to detect new malware. In this paper, we propose a new method to detect unknown malware families. This model is based on the frequency of the appearance of opcode sequences. Furthermore, we describe a technique to mine the relevance of each opcode and assess the frequency of each opcode sequence. In addition, we provide empirical validation that this new method is capable of detecting unknown malware.
N-Grams-based file signatures for malware detection
- in: Proceedings of the 2009 International Conference on Enterprise Information Systems (ICEIS), Volume AIDSS
"... Abstract: Malware is any malicious code that has the potential to harm any computer or network. The amount of malware is increasing faster every year and poses a serious security threat. Thus, malware detection is a critical topic in computer security. Currently, signature-based detection is the mos ..."
Abstract
-
Cited by 10 (4 self)
- Add to MetaCart
(Show Context)
Abstract: Malware is any malicious code that has the potential to harm any computer or network. The amount of malware is increasing faster every year and poses a serious security threat. Thus, malware detection is a critical topic in computer security. Currently, signature-based detection is the most extended method for detecting malware. Although this method is still used on most popular commercial computer antivirus software, it can only achieve detection once the virus has already caused damage and it is registered. Therefore, it fails to detect new malware. Applying a methodology proven successful in similar problem-domains, we propose the use of n-grams (every substring of a larger string, of a fixed lenght n) as file signatures in order to detect unknown malware whilst keeping low false positive ratio. We show that n-grams signatures provide an effective way to detect unknown malware. 1
NOA: AN INFORMATION RETRIEVAL BASED MALWARE DETECTION SYSTEM
"... Communicated by Deepak Gang Abstract. Malware refers to any type of code written with the intention of harming a computer or network. The quantity of malware being produced is increasing every year and poses a serious global security threat. Hence, malware detection is a critical topic in computer s ..."
Abstract
-
Cited by 2 (0 self)
- Add to MetaCart
(Show Context)
Communicated by Deepak Gang Abstract. Malware refers to any type of code written with the intention of harming a computer or network. The quantity of malware being produced is increasing every year and poses a serious global security threat. Hence, malware detection is a critical topic in computer security. Signature-based detection is the most widespread method used in commercial antivirus solutions. However, signature-based detection can detect malware only once the malicious executable has caused damage and has been conveniently registered and documented. Therefore, the signature-based method fails to detect obfuscated malware variants. In this paper, a new malware detection system is proposed based on information retrieval. For the representation of executables, the frequency of the appearance of opcode sequences is used. Through this architecture a malware detection system prototype is developed and evaluated in terms of performance, malware variant recall (false negative ratio) and false positive.
COLLECTIVE CLASSIFICATION FOR UNKNOWNMALWARE DETECTION
"... Abstract: Malware is any type of computer software harmful to computers and networks. The amount of malware is increasing every year and poses as a serious global security threat. Signature-based detection is the most broadly used commercial antivirus method, however, it fails to detect new and prev ..."
Abstract
-
Cited by 2 (0 self)
- Add to MetaCart
(Show Context)
Abstract: Malware is any type of computer software harmful to computers and networks. The amount of malware is increasing every year and poses as a serious global security threat. Signature-based detection is the most broadly used commercial antivirus method, however, it fails to detect new and previously unseen malware. Supervised machine-learning models have been proposed in order to solve this issue, but the usefulness of supervised learning is far to be perfect because it requires a significant amount of malicious code and benign software to be identified and labelled in beforehand. In this paper, we propose a new method that adopts a collective learning approach to detect unknown malware. Collective classification is a type of semi-supervised learning that presents an interesting method for optimising the classification of partially-labelled data. In this way, we propose here, for the first time, collective classification algorithms to build different machine-learning classifiers using a set of labelled (as malware and legitimate software) and unlabelled instances. We perform an empirical validation demonstrating that the labelling efforts are lower than when supervised learning is used, while maintaining high accuracy rates. 1
Using Opcode Sequences in Single-Class Learning to Detect Unknown Malware
"... Malware is any type of malicious code that has the potential to harm a computer or network. The volume of malware is growing at a faster rate every year and poses a serious global security threat. Although signature-based detection is the most widespread method used in commercial antivirus programs, ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
(Show Context)
Malware is any type of malicious code that has the potential to harm a computer or network. The volume of malware is growing at a faster rate every year and poses a serious global security threat. Although signature-based detection is the most widespread method used in commercial antivirus programs, it consistently fails to detect new malware. Supervised machine-learning models have been used to address this issue. However, the use of supervised learning is limited because it needs a large amount of malicious code and benign software to first be labelled. In this paper, we propose a new method that uses single-class learning to detect unknown malware families. This method is based on examining the frequencies of the appearance of opcode sequences to build a machine-learning classifier using only one set of labelled instances within a specific class of either malware or legitimate software. We performed an empirical study that shows that this method can reduce the effort of labelling software while maintaining high accuracy.
unknown title
"... Abstract Malware detection is a crucial aspect of software security. Cur-rent malware detectors work by checking for "signatures, " which ..."
Abstract
- Add to MetaCart
(Show Context)
Abstract Malware detection is a crucial aspect of software security. Cur-rent malware detectors work by checking for "signatures, " which