Results 1  10
of
80
The Quadratic Assignment Problem
 TO APPEAR IN THE HANDBOOK OF COMBINATORIAL OPTIMIZATION
"... This paper aims at describing the state of the art on quadratic assignment problems (QAPs). It discusses the most important developments in all aspects of the QAP such as linearizations, QAP polyhedra, algorithms to solve the problem to optimality, heuristics, polynomially solvable special cases, an ..."
Abstract

Cited by 182 (3 self)
 Add to MetaCart
This paper aims at describing the state of the art on quadratic assignment problems (QAPs). It discusses the most important developments in all aspects of the QAP such as linearizations, QAP polyhedra, algorithms to solve the problem to optimality, heuristics, polynomially solvable special cases, and asymptotic behavior. Moreover, it also considers problems related to the QAP, e.g. the biquadratic assignment problem, and discusses the relationship between the QAP and other well known combinatorial optimization problems, e.g. the traveling salesman problem, the graph partitioning problem, etc.
Tabu Search: A Tutorial
 Interfaces
, 1990
"... Tabu search is a "higher level " heuristic procedure for solving optimization problems, designed to guide other methods (or their component processes) to escape the trap of local optimality. Tabu search has obtained optimal and near optimal solutions to a wide variety of classical and prac ..."
Abstract

Cited by 144 (2 self)
 Add to MetaCart
(Show Context)
Tabu search is a "higher level " heuristic procedure for solving optimization problems, designed to guide other methods (or their component processes) to escape the trap of local optimality. Tabu search has obtained optimal and near optimal solutions to a wide variety of classical and practical problems in applications ranging from scheduling to telecommunications and from character recognition to neural networks. It uses flexible structures memory (to permit search information to be exploited more thoroughly than by rigid memory systems or memoryless systems), conditions for strategically constraining and freeing the search process (embodied in tabu restrictions and aspiration criteria), and memory functions of varying time spans for intensifying and diversifying the search (reinforcing attributes historically found good and driving the search into new regions). Tabu search can be integrated with branchandbound and cutting plane procedures, and it has the ability to start with a simple implementation that can be upgraded over time to incorporate more advanced or specialized elements. T abu search is a metaheuristic that can to prevent them from becoming trapped at be superimposed on other procedures locally optimal solutions. The method can
Greedy Randomized Adaptive Search Procedures For The Steiner Problem In Graphs
 QUADRATIC ASSIGNMENT AND RELATED PROBLEMS, VOLUME 16 OF DIMACS SERIES ON DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
, 1999
"... We describe four versions of a Greedy Randomized Adaptive Search Procedure (GRASP) for finding approximate solutions of general instances of the Steiner Problem in Graphs. Di#erent construction and local search algorithms are presented. Preliminary computational results with one of the versions ..."
Abstract

Cited by 121 (30 self)
 Add to MetaCart
We describe four versions of a Greedy Randomized Adaptive Search Procedure (GRASP) for finding approximate solutions of general instances of the Steiner Problem in Graphs. Di#erent construction and local search algorithms are presented. Preliminary computational results with one of the versions on a variety of test problems are reported. On the majority of instances from the ORLibrary, a set of standard test problems, the GRASP produced optimal solutions. On those that optimal solutions were not found, the GRASP found good quality approximate solutions.
The Quadratic Assignment Problem: A Survey and Recent Developments
 In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1994
"... . Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment probl ..."
Abstract

Cited by 114 (16 self)
 Add to MetaCart
(Show Context)
. Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment problem. We focus our attention on recent developments. 1. Introduction Given a set N = f1; 2; : : : ; ng and n \Theta n matrices F = (f ij ) and D = (d kl ), the quadratic assignment problem (QAP) can be stated as follows: min p2\Pi N n X i=1 n X j=1 f ij d p(i)p(j) + n X i=1 c ip(i) ; where \Pi N is the set of all permutations of N . One of the major applications of the QAP is in location theory where the matrix F = (f ij ) is the flow matrix, i.e. f ij is the flow of materials from facility i to facility j, and D = (d kl ) is the distance matrix, i.e. d kl represents the distance from location k to location l [62, 67, 137]. The cost of simultaneously assigning facility i to locat...
VLSI cell placement techniques
 ACM Computing Surveys
, 1991
"... VLSI cell placement problem is known to be NP complete. A wide repertoire of heuristic algorithms exists in the literature for efficiently arranging the logic cells on a VLSI chip. The objective of this paper is to present a comprehensive survey of the various cell placement techniques, with emphasi ..."
Abstract

Cited by 93 (0 self)
 Add to MetaCart
VLSI cell placement problem is known to be NP complete. A wide repertoire of heuristic algorithms exists in the literature for efficiently arranging the logic cells on a VLSI chip. The objective of this paper is to present a comprehensive survey of the various cell placement techniques, with emphasis on standard ce11and macro
Fitness Landscape Analysis and Memetic Algorithms for the Quadratic Assignment Problem
, 1999
"... In this paper, a fitness landscape analysis for several instances of the quadratic assignment problem (QAP) is performed and the results are used to classify problem instances according to their hardness for local search heuristics and metaheuristics based on local search. The local properties of t ..."
Abstract

Cited by 84 (9 self)
 Add to MetaCart
In this paper, a fitness landscape analysis for several instances of the quadratic assignment problem (QAP) is performed and the results are used to classify problem instances according to their hardness for local search heuristics and metaheuristics based on local search. The local properties of the tness landscape are studied by performing an autocorrelation analysis, while the global structure is investigated by employing a fitness distance correlation analysis. It is shown that epistasis, as expressed by the dominance of the flow and distance matrices of a QAP instance, the landscape ruggedness in terms of the correlation length of a landscape, and the correlation between fitness and distance of local optima in the landscape together are useful for predicting the performance of memetic algorithms  evolutionary algorithms incorporating local search  to a certain extent. Thus, based on these properties a favorable choice of recombination and/or mutation operators can be found.
Solving Large Quadratic Assignment Problems on Computational Grids
, 2000
"... The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computat ..."
Abstract

Cited by 82 (6 self)
 Add to MetaCart
The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computational platforms. In this article we describe a novel approach to solve QAPs using a stateoftheart branchandbound algorithm running on a federation of geographically distributed resources known as a computational grid. Solution of QAPs of unprecedented complexity, including the nug30, kra30b, and tho30 instances, is reported.
A Genetic Approach to the Quadratic Assignment Problem
, 1992
"... The Quadratic Assignment Problem (QAP) is a wellknown combinatorial optimization problem with a wide variety of practical applications. Although many heuristics and semienumerative procedures for QAP have been proposed, no dominant algorithm has emerged. In this paper, we describe a Genetic Algori ..."
Abstract

Cited by 72 (7 self)
 Add to MetaCart
The Quadratic Assignment Problem (QAP) is a wellknown combinatorial optimization problem with a wide variety of practical applications. Although many heuristics and semienumerative procedures for QAP have been proposed, no dominant algorithm has emerged. In this paper, we describe a Genetic Algorithm (GA) approach to QAP. Genetic algorithms are a class of randomized parallel search heuristics which emulate biological natural selection on a population of feasible solutions. We present computational results which show that this GA approach finds solutions competitive with those of the best previouslyknown heuristics, and argue that genetic algorithms provide a particularly robust method for QAP and its more complex extensions.
Iterated Local Search for the Quadratic Assignment Problem
 FG INTELLEKTIK, FB INFORMATIK
, 1999
"... Iterated local search (ILS) is a surprisingly simple but at the same time powerful metaheuristic for finding high quality approximate solutions for combinatorial optimization problems. ILS is based on the repeated application of a local search algorithm to initial solution which are obtained by m ..."
Abstract

Cited by 60 (10 self)
 Add to MetaCart
Iterated local search (ILS) is a surprisingly simple but at the same time powerful metaheuristic for finding high quality approximate solutions for combinatorial optimization problems. ILS is based on the repeated application of a local search algorithm to initial solution which are obtained by mutations of previously found local optima  in most ILS algorithms these mutations are applied to the best found solution since the start of the search. In this article we present and analyze the application of ILS to the quadratic assignment problem (QAP). We first justify the potential usefulness of an ILS approach to this problem by an analysis of the QAP search space. An investigation of the runtime behavior of the ILS algorithm reveals a stagnation behavior of the algorithm  it may get stuck for many iterations in local optima. To avoid such stagnation situations we propose enhancements of the ILS algorithm based on extended acceptance criteria as well as populationbased...