Results 1  10
of
181
On differential graded categories
 INTERNATIONAL CONGRESS OF MATHEMATICIANS. VOL. II
, 2006
"... Differential graded categories enhance our understanding of triangulated categories appearing in algebra and geometry. In this survey, we review their foundations and report on recent work by Drinfeld, DuggerShipley,..., Toën and ToënVaquié. ..."
Abstract

Cited by 190 (4 self)
 Add to MetaCart
(Show Context)
Differential graded categories enhance our understanding of triangulated categories appearing in algebra and geometry. In this survey, we review their foundations and report on recent work by Drinfeld, DuggerShipley,..., Toën and ToënVaquié.
From triangulated categories to cluster algebras
"... Abstract. In the acyclic case, we establish a onetoone correspondence between the tilting objects of the cluster category and the clusters of the associated cluster algebra. This correspondence enables us to solve conjectures on cluster algebras. We prove a multiplicativity theorem, a denominator ..."
Abstract

Cited by 181 (21 self)
 Add to MetaCart
(Show Context)
Abstract. In the acyclic case, we establish a onetoone correspondence between the tilting objects of the cluster category and the clusters of the associated cluster algebra. This correspondence enables us to solve conjectures on cluster algebras. We prove a multiplicativity theorem, a denominator theorem, and some conjectures on properties of the mutation graph. As in the previous article, the proofs rely on the CalabiYau property of the cluster category. 1.
Clustertilted algebras are Gorenstein and stably
 CalabiYau, Adv. Math
"... Abstract. We prove that in a 2CalabiYau triangulated category, each cluster tilting subcategory is Gorenstein with all its finitely generated projectives of injective dimension at most one. We show that the stable category of its CohenMacaulay modules is 3CalabiYau. We deduce in particular that ..."
Abstract

Cited by 147 (17 self)
 Add to MetaCart
Abstract. We prove that in a 2CalabiYau triangulated category, each cluster tilting subcategory is Gorenstein with all its finitely generated projectives of injective dimension at most one. We show that the stable category of its CohenMacaulay modules is 3CalabiYau. We deduce in particular that clustertilted algebras are Gorenstein of dimension at most one, and hereditary if they are of finite global dimension. Our results also apply to the stable (!) endomorphism rings of maximal rigid modules of [27]. In addition, we prove a general result about relative 3CalabiYau duality over non stable endomorphism rings. This strengthens and generalizes the Extgroup symmetries obtained in [27] for simple modules. Finally, we generalize the results on relative CalabiYau duality from 2CalabiYau to dCalabiYau categories. We show how to produce many examples of dcluster tilted algebras. 1.
Cluster algebras as Hall algebras of quiver representations
"... Abstract. Recent articles have shown the connection between representation theory of quivers and the theory of cluster algebras. In this article, we prove that some cluster algebras of type ADE can be recovered from the data of the ..."
Abstract

Cited by 140 (5 self)
 Add to MetaCart
(Show Context)
Abstract. Recent articles have shown the connection between representation theory of quivers and the theory of cluster algebras. In this article, we prove that some cluster algebras of type ADE can be recovered from the data of the
Tilting theory and cluster combinatorics
 572–618. EQUIVALENCE AND GRADED DERIVED EQUIVALENCE 43
"... of a finitedimensional hereditary algebra H over a field. We show that, in the simplylaced Dynkin case, C can be regarded as a natural model for the combinatorics of the corresponding Fomin–Zelevinsky cluster algebra. In this model, the tilting objects correspond to the clusters of Fomin–Zelevinsk ..."
Abstract

Cited by 131 (7 self)
 Add to MetaCart
(Show Context)
of a finitedimensional hereditary algebra H over a field. We show that, in the simplylaced Dynkin case, C can be regarded as a natural model for the combinatorics of the corresponding Fomin–Zelevinsky cluster algebra. In this model, the tilting objects correspond to the clusters of Fomin–Zelevinsky. Using approximation theory, we investigate the tilting theory of C, showing that it is more regular than that of the module category itself, and demonstrating an interesting link with the classification of selfinjective algebras of finite representation type. This investigation also enables us to conjecture a generalisation of APRtilting.
Cluster Categories for Algebras of Global Dimension 2 and . . .
, 2008
"... Let k be a field and A a finitedimensional kalgebra of global dimension ≤ 2. We construct a triangulated category CA associated to A which, if A is hereditary, is triangle equivalent to the cluster category of A. When CA is Homfinite, we prove that it is 2CY and endowed with a canonical cluster ..."
Abstract

Cited by 124 (10 self)
 Add to MetaCart
Let k be a field and A a finitedimensional kalgebra of global dimension ≤ 2. We construct a triangulated category CA associated to A which, if A is hereditary, is triangle equivalent to the cluster category of A. When CA is Homfinite, we prove that it is 2CY and endowed with a canonical clustertilting object. This new class of categories contains some of the stable categories of modules over a preprojective algebra studied by GeissLeclercSchröer and by BuanIyamaReitenScott. Our results rely on quivers with potential. Namely, we introduce a cluster category C (Q,W) associated to a quiver with potential (Q, W). When it is Jacobifinite we prove that it is endowed with a clustertilting object whose endomorphism algebra is isomorphic
CLUSTER ALGEBRAS, QUIVER REPRESENTATIONS AND TRIANGULATED CATEGORIES
"... Abstract. This is an introduction to some aspects of FominZelevinsky’s cluster algebras and their links with the representation theory of quivers and with CalabiYau triangulated categories. It is based on lectures given by the author at summer schools held in 2006 (Bavaria) and 2008 (Jerusalem). I ..."
Abstract

Cited by 112 (6 self)
 Add to MetaCart
Abstract. This is an introduction to some aspects of FominZelevinsky’s cluster algebras and their links with the representation theory of quivers and with CalabiYau triangulated categories. It is based on lectures given by the author at summer schools held in 2006 (Bavaria) and 2008 (Jerusalem). In addition to by now classical material, we present the outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams (details will appear elsewhere) and recent results on the interpretation of mutations as derived equivalences. Contents
Cluster structures for 2CalabiYau categories and unipotent groups
"... Abstract. We investigate cluster tilting objects (and subcategories) in triangulated 2CalabiYau categories and related categories. In particular we construct a new class of such categories related to preprojective algebras of nonDynkin quivers associated with elements in the Coxeter group. This c ..."
Abstract

Cited by 110 (18 self)
 Add to MetaCart
(Show Context)
Abstract. We investigate cluster tilting objects (and subcategories) in triangulated 2CalabiYau categories and related categories. In particular we construct a new class of such categories related to preprojective algebras of nonDynkin quivers associated with elements in the Coxeter group. This class of 2CalabiYau categories contains the cluster categories and the stable categories of preprojective algebras of Dynkin graphs as special cases. For these 2CalabiYau categories we construct cluster tilting objects associated with each reduced expression. The associated quiver is described in terms of the reduced expression. Motivated by the theory of cluster algebras, we formulate the notions of (weak) cluster structure and substructure, and give several illustrations of these concepts. We give applications to cluster algebras and subcluster algebras related
Clustertilted algebras
 Trans. Amer. Math. Soc
"... Abstract. We introduce a new class of algebras, which we call clustertilted. They are by definition the endomorphism algebras of tilting objects in a cluster category. We show that their representation theory is very close to the representation theory of hereditary algebras. As an application of th ..."
Abstract

Cited by 96 (7 self)
 Add to MetaCart
(Show Context)
Abstract. We introduce a new class of algebras, which we call clustertilted. They are by definition the endomorphism algebras of tilting objects in a cluster category. We show that their representation theory is very close to the representation theory of hereditary algebras. As an application of this, we prove a generalised version of socalled APRtilting.