Results 1  10
of
81
Ergodic seminorms for commuting transformations and applications. Available at http://fr.arxiv.org/abs/0811.3703
"... Abstract. Recently, T. Tao gave a finitary proof a convergence theorem for multiple averages with several commuting transformations and soon later, T. Austin gave an ergodic proof of the same result. Although we give here one more proof of the same theorem, this is not the main goal of this paper. O ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
(Show Context)
Abstract. Recently, T. Tao gave a finitary proof a convergence theorem for multiple averages with several commuting transformations and soon later, T. Austin gave an ergodic proof of the same result. Although we give here one more proof of the same theorem, this is not the main goal of this paper. Our main concern is to provide some tools for the case of several commuting transformations, similar to the tools successfully used in the case of a single transformation, with the idea that they will be useful in the solution of other problems. 1.
Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces
, 2008
"... This paper provides a fixed point theorem for asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces as well as new effective results on the KrasnoselskiMann iterations of such mappings. The latter were found using methods from logic and the paper continues a case study in the g ..."
Abstract

Cited by 18 (10 self)
 Add to MetaCart
This paper provides a fixed point theorem for asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces as well as new effective results on the KrasnoselskiMann iterations of such mappings. The latter were found using methods from logic and the paper continues a case study in the general program of extracting effective data from primafacie ineffective proofs in the fixed point theory of such mappings.
A quantitative Mean Ergodic Theorem for uniformly convex Banach spaces
, 2008
"... We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by ..."
Abstract

Cited by 17 (10 self)
 Add to MetaCart
(Show Context)
We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1] and T. Tao [10]. 1
Proof Interpretations and the Computational Content of Proofs. Draft of book in preparation
, 2007
"... This survey reports on some recent developments in the project of applying proof theory to proofs in core mathematics. The historical roots, however, go back to Hilbert’s central theme in the foundations of mathematics which can be paraphrased by the following question ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
This survey reports on some recent developments in the project of applying proof theory to proofs in core mathematics. The historical roots, however, go back to Hilbert’s central theme in the foundations of mathematics which can be paraphrased by the following question
The metamathematics of ergodic theory
 THE ANNALS OF PURE AND APPLIED LOGIC
, 2009
"... The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theo ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
(Show Context)
The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theory provides rich opportunities for such analysis. Although the field has its origins in seventeenth century dynamics and nineteenth century statistical mechanics, it employs infinitary, nonconstructive, and structural methods that are characteristically modern. At the same time, computational concerns and recent applications to combinatorics and number theory force us to reconsider the constructive character of the theory and its methods. This paper surveys some recent contributions to the metamathematical study of ergodic theory, focusing on the mean and pointwise ergodic theorems and the Furstenberg structure theorem for measure preserving systems. In particular, I characterize the extent to which these theorems are nonconstructive, and explain how prooftheoretic methods can be used to locate their “constructive content.”
Norm convergence of nilpotent ergodic averages
, 2012
"... Abstract We show that multiple polynomial ergodic averages arising from nilpotent groups of measure preserving transformations of a probability space always converge in the L 2 norm. ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
(Show Context)
Abstract We show that multiple polynomial ergodic averages arising from nilpotent groups of measure preserving transformations of a probability space always converge in the L 2 norm.