Results 1  10
of
404
KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract

Cited by 935 (41 self)
 Add to MetaCart
In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and include compression, regularization in inverse problems, feature extraction, and more. Recent activity in this field has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. Both of these techniques have been considered, but this topic is largely still open. In this paper we propose a novel algorithm for adapting dictionaries in order to achieve sparse signal representations. Given a set of training signals, we seek the dictionary that leads to the best representation for each member in this set, under strict sparsity constraints. We present a new method—the KSVD algorithm—generalizing the umeans clustering process. KSVD is an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data. The update of the dictionary columns is combined with an update of the sparse representations, thereby accelerating convergence. The KSVD algorithm is flexible and can work with any pursuit method (e.g., basis pursuit, FOCUSS, or matching pursuit). We analyze this algorithm and demonstrate its results both on synthetic tests and in applications on real image data.
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 513 (17 self)
 Add to MetaCart
(Show Context)
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
A review of image denoising algorithms, with a new one
 SIMUL
, 2005
"... The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding perf ..."
Abstract

Cited by 508 (6 self)
 Add to MetaCart
The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding performance when the image model corresponds to the algorithm assumptions but fail in general and create artifacts or remove image fine structures. The main focus of this paper is, first, to define a general mathematical and experimental methodology to compare and classify classical image denoising algorithms and, second, to propose a nonlocal means (NLmeans) algorithm addressing the preservation of structure in a digital image. The mathematical analysis is based on the analysis of the “method noise, ” defined as the difference between a digital image and its denoised version. The NLmeans algorithm is proven to be asymptotically optimal under a generic statistical image model. The denoising performance of all considered methods are compared in four ways; mathematical: asymptotic order of magnitude of the method noise under regularity assumptions; perceptualmathematical: the algorithms artifacts and their explanation as a violation of the image model; quantitative experimental: by tables of L 2 distances of the denoised version to the original image. The most powerful evaluation method seems, however, to be the visualization of the method noise on natural images. The more this method noise looks like a real white noise, the better the method.
Stable recovery of sparse overcomplete representations in the presence of noise
 IEEE TRANS. INFORM. THEORY
, 2006
"... Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes t ..."
Abstract

Cited by 460 (22 self)
 Add to MetaCart
(Show Context)
Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes the possibility of stable recovery under a combination of sufficient sparsity and favorable structure of the overcomplete system. Considering an ideal underlying signal that has a sufficiently sparse representation, it is assumed that only a noisy version of it can be observed. Assuming further that the overcomplete system is incoherent, it is shown that the optimally sparse approximation to the noisy data differs from the optimally sparse decomposition of the ideal noiseless signal by at most a constant multiple of the noise level. As this optimalsparsity method requires heavy (combinatorial) computational effort, approximation algorithms are considered. It is shown that similar stability is also available using the basis and the matching pursuit algorithms. Furthermore, it is shown that these methods result in sparse approximation of the noisy data that contains only terms also appearing in the unique sparsest representation of the ideal noiseless sparse signal.
New tight frames of curvelets and optimal representations of objects with piecewise C² singularities
 COMM. ON PURE AND APPL. MATH
, 2002
"... This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshap ..."
Abstract

Cited by 428 (21 self)
 Add to MetaCart
(Show Context)
This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshaped elements at fine scales. These elements have many useful geometric multiscale features that set them apart from classical multiscale representations such as wavelets. For instance, curvelets obey a parabolic scaling relation which says that at scale 2−j, each element has an envelope which is aligned along a ‘ridge ’ of length 2−j/2 and width 2−j. We prove that curvelets provide an essentially optimal representation of typical objects f which are C2 except for discontinuities along C2 curves. Such representations are nearly as sparse as if f were not singular and turn out to be far more sparse than the wavelet decomposition of the object. For instance, the nterm partial reconstruction f C n obtained by selecting the n largest terms in the curvelet series obeys ‖f − f C n ‖ 2 L2 ≤ C · n−2 · (log n) 3, n → ∞. This rate of convergence holds uniformly over a class of functions which are C 2 except for discontinuities along C 2 curves and is essentially optimal. In comparison, the squared error of nterm wavelet approximations only converges as n −1 as n → ∞, which is considerably worst than the optimal behavior.
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 427 (36 self)
 Add to MetaCart
(Show Context)
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
The DualTree Complex Wavelet Transform  A coherent framework for multiscale signal and image processing
, 2005
"... The dualtree complex wavelet transform (CWT) is a relatively recent enhancement to the discrete wavelet transform (DWT), with important additional properties: It is nearly shift invariant and directionally selective in two and higher dimensions. It achieves this with a redundancy factor of only 2 ..."
Abstract

Cited by 270 (29 self)
 Add to MetaCart
The dualtree complex wavelet transform (CWT) is a relatively recent enhancement to the discrete wavelet transform (DWT), with important additional properties: It is nearly shift invariant and directionally selective in two and higher dimensions. It achieves this with a redundancy factor of only 2 d for ddimensional signals, which is substantially lower than the undecimated DWT. The multidimensional (MD) dualtree CWT is nonseparable but is based on a computationally efficient, separable filter bank (FB). This tutorial discusses the theory behind the dualtree transform, shows how complex wavelets with good properties can be designed, and illustrates a range of applications in signal and image processing. We use the complex number symbol C in CWT to
Sparse representation for color image restoration
 the IEEE Trans. on Image Processing
, 2007
"... Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted ..."
Abstract

Cited by 219 (30 self)
 Add to MetaCart
(Show Context)
Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted dictionaries for images has been a major challenge. The KSVD has been recently proposed for this task [1], and shown to perform very well for various grayscale image processing tasks. In this paper we address the problem of learning dictionaries for color images and extend the KSVDbased grayscale image denoising algorithm that appears in [2]. This work puts forward ways for handling nonhomogeneous noise and missing information, paving the way to stateoftheart results in applications such as color image denoising, demosaicing, and inpainting, as demonstrated in this paper. EDICS Category: COLCOLR (Color processing) I.
Image Decomposition via the Combination of Sparse Representations and a Variational Approach
 IEEE Transactions on Image Processing
, 2004
"... The separation of image content into semantic parts plays a vital role in applications such as compression, enhancement, restoration, and more. In recent years several pioneering works suggested such a separation based on variational formulation, and others using independent component analysis and s ..."
Abstract

Cited by 219 (28 self)
 Add to MetaCart
(Show Context)
The separation of image content into semantic parts plays a vital role in applications such as compression, enhancement, restoration, and more. In recent years several pioneering works suggested such a separation based on variational formulation, and others using independent component analysis and sparsity. This paper presents a novel method for separating images into texture and piecewise smooth (cartoon) parts, exploiting both the variational and the sparsity mechanisms. The method combines the Basis Pursuit Denoising (BPDN) algorithm and the TotalVariation (TV) regularization scheme. The basic idea presented in this paper is the use of two appropriate dictionaries, one for the representation of textures, and the other for the natural scene parts, assumed to be piecewisesmooth. Both dictionaries are chosen such that they lead to sparse representations over one type of imagecontent (either texture or piecewise smooth). The use of the BPDN with the two augmented dictionaries leads to the desired separation, along with noise removal as a byproduct. As the need to choose proper dictionaries is generally hard, a TV regularization is employed to better direct the separation process and reduce ringing artifacts. We present a highly e#cient numerical scheme to solve the combined optimization problem posed in our model, and show several experimental results that validate the algorithm's performance.
Fast Discrete Curvelet Transforms
, 2005
"... This paper describes two digital implementations of a new mathematical transform, namely, the second generation curvelet transform [12, 10] in two and three dimensions. The first digital transformation is based on unequallyspaced fast Fourier transforms (USFFT) while the second is based on the wrap ..."
Abstract

Cited by 175 (9 self)
 Add to MetaCart
(Show Context)
This paper describes two digital implementations of a new mathematical transform, namely, the second generation curvelet transform [12, 10] in two and three dimensions. The first digital transformation is based on unequallyspaced fast Fourier transforms (USFFT) while the second is based on the wrapping of specially selected Fourier samples. The two implementations essentially differ by the choice of spatial grid used to translate curvelets at each scale and angle. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. And both implementations are fast in the sense that they run in O(n 2 log n) flops for n by n Cartesian arrays; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity. Our digital transformations improve upon earlier implementations—based upon the first generation of curvelets—in the sense that they are conceptually simpler, faster and far less redundant. The software CurveLab, which implements both transforms presented in this paper, is available at