Results 1  10
of
1,474
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract

Cited by 3218 (68 self)
 Add to MetaCart
We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approach is that local properties are often not preserved at the global level. We present a general framework for using additional interface processes to model the environment for a component. These interface processes are typically much simpler than the full environment of the component. By composing a component with its interface processes and then checking properties of this composition, we can guarantee that these properties will be preserved at the global level. We give two example compositional systems based on the logic CTL*.
The model checker SPIN
 IEEE Transactions on Software Engineering
, 1997
"... Abstract—SPIN is an efficient verification system for models of distributed software systems. It has been used to detect design errors in applications ranging from highlevel descriptions of distributed algorithms to detailed code for controlling telephone exchanges. This paper gives an overview of ..."
Abstract

Cited by 1505 (26 self)
 Add to MetaCart
(Show Context)
Abstract—SPIN is an efficient verification system for models of distributed software systems. It has been used to detect design errors in applications ranging from highlevel descriptions of distributed algorithms to detailed code for controlling telephone exchanges. This paper gives an overview of the design and structure of the verifier, reviews its theoretical foundation, and gives an overview of significant practical applications. Index Terms—Formal methods, program verification, design verification, model checking, distributed systems, concurrency.
Bandera: Extracting Finitestate Models from Java Source Code
 IN PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 2000
"... Finitestate verification techniques, such as model checking, have shown promise as a costeffective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a fini ..."
Abstract

Cited by 653 (35 self)
 Add to MetaCart
Finitestate verification techniques, such as model checking, have shown promise as a costeffective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a finitestate model that approximates the executable behavior of the software system of interest. Current bestpractice involves handconstruction of models which is expensive (prohibitive for all but the smallest systems), prone to errors (which can result in misleading verification results), and difficult to optimize (which is necessary to combat the exponential complexity of verification algorithms). In this paper, we describe an integrated collection of program analysis and transformation components, called Bandera, that enables the automatic extraction of safe, compact finitestate models from program source code. Bandera takes as input Java source code and generates a program model in the input language of one of several existing verification tools; Bandera also maps verifier outputs back to the original source code. We discuss the major components of Bandera and give an overview of how it can be used to model check correctness properties of Java programs.
Alternatingtime Temporal Logic
 Journal of the ACM
, 1997
"... Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract

Cited by 615 (55 self)
 Add to MetaCart
(Show Context)
Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general variety of temporal logic: alternatingtime temporal logic offers selective quantification over those paths that are possible outcomes of games, such as the game in which the system and the environment alternate moves. While lineartime and branchingtime logics are natural specification languages for closed systems, alternatingtime logics are natural specification languages for open systems. For example, by preceding the temporal operator "eventually" with a selective path quantifier, we can specify that in the game between the system and the environment, the system has a strategy to reach a certain state. Also the problems of receptiveness, realizability, and controllability can be formulated as modelchecking problems for alternatingtime formulas.
Model Checking Programs
, 2003
"... The majority of work carried out in the formal methods community throughout the last three decades has (for good reasons) been devoted to special languages designed to make it easier to experiment with mechanized formal methods such as theorem provers, proof checkers and model checkers. In this pape ..."
Abstract

Cited by 583 (63 self)
 Add to MetaCart
(Show Context)
The majority of work carried out in the formal methods community throughout the last three decades has (for good reasons) been devoted to special languages designed to make it easier to experiment with mechanized formal methods such as theorem provers, proof checkers and model checkers. In this paper we will attempt to give convincing arguments for why we believe it is time for the formal methods community to shift some of its attention towards the analysis of programs written in modern programming languages. In keeping with this philosophy we have developed a verification and testing environment for Java, called Java PathFinder (JPF), which integrates model checking, program analysis and testing. Part of this work has consisted of building a new Java Virtual Machine that interprets Java bytecode. JPF uses state compression to handle big states, and partial order and symmetry reduction, slicing, abstraction, and runtime analysis techniques to reduce the state space. JPF has been applied to a realtime avionics operating system developed at Honeywell, illustrating an intricate error, and to a model of a spacecraft controller, illustrating the combination of abstraction, runtime analysis, and slicing with model checking.
Formal verification for faulttolerant architectures: Prolegomena to the design of PVS
 IEEE Transactions on Software Engineering
, 1995
"... Abstract PVS is the most recent in a series of verification systems developed at SRI. Its design was strongly influenced, and later refined, by our experiences in developing formal specifications and mechanically checked verifications for the faulttolerant architecture, algorithms, and implementa ..."
Abstract

Cited by 333 (47 self)
 Add to MetaCart
Abstract PVS is the most recent in a series of verification systems developed at SRI. Its design was strongly influenced, and later refined, by our experiences in developing formal specifications and mechanically checked verifications for the faulttolerant architecture, algorithms, and implementations of a model "reliable computing platform " (RCP) for lifecritical digital flightcontrol applications, and by a collaborative project to formally verify the design of a commercial avionics processor called AAMP5. Several of the formal specifications and verifications performed in support of RCP and AAMP5 are individually of considerable complexity and difficulty. But in order to contribute to the overall goal, it has often been necessary to modify completed verifications to accommodate changed assumptions or requirements, and people other than the original developer have often needed to understand, review, build on, modify, or extract part of an intricate verification. In this paper, we outline the verifications performed, present the lessons learned, and describe some of the design decisions taken in PVS to better support these large, difficult, iterative, and collaborative verifications.
Korat: Automated testing based on Java predicates
 IN PROC. INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS (ISSTA
, 2002
"... This paper presents Korat, a novel framework for automated testing of Java programs. Given a formal specification for a method, Korat uses the method precondition to automatically generate all nonisomorphic test cases bounded by a given size. Korat then executes the method on each of these test case ..."
Abstract

Cited by 329 (53 self)
 Add to MetaCart
This paper presents Korat, a novel framework for automated testing of Java programs. Given a formal specification for a method, Korat uses the method precondition to automatically generate all nonisomorphic test cases bounded by a given size. Korat then executes the method on each of these test cases, and uses the method postcondition as a test oracle to check the correctness of each output. To generate test cases for a method, Korat constructs a Java predicate (i.e., a method that returns a boolean) from the method’s precondition. The heart of Korat is a technique for automatic test case generation: given a predicate and a bound on the size of its inputs, Korat generates all nonisomorphic inputs for which the predicate returns true. Korat exhaustively explores the input space of the predicate but does so efficiently by monitoring the predicate’s executions and pruning large portions of the search space. This paper illustrates the use of Korat for testing several data structures, including some from the Java Collections Framework. The experimental results show that it is feasible to generate test cases from Java predicates, even when the search space for inputs is very large. This paper also compares Korat with a testing framework based on declarative specifications. Contrary to our initial expectation, the experiments show that Korat generates test cases much faster than the declarative framework.
Symbolic model checking for sequential circuit verification
 IEEE TRANSACTIONS ON COMPUTERAIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
, 1994
"... The temporal logic model checking algorithm of Clarke, Emerson, and Sistla [17] is modified to represent state graphs using binary decision diagrams (BDD’s) [7] and partitioned trunsirion relations [lo], 1111. Because this representation captures some of the regularity in the state space of circuit ..."
Abstract

Cited by 270 (12 self)
 Add to MetaCart
(Show Context)
The temporal logic model checking algorithm of Clarke, Emerson, and Sistla [17] is modified to represent state graphs using binary decision diagrams (BDD’s) [7] and partitioned trunsirion relations [lo], 1111. Because this representation captures some of the regularity in the state space of circuits with data path logic, we are able to verify circuits with an extremely large number of states. We demonstrate this new technique on a synchronous pipelined design with approximately 5 x 10^120 states. Our model checking algorithm handles full CTL with fairness constraints. Consequently, we are able to express a number of important liveness and fairness properties, which would otherwise not be expressible in CTL. We give empirical results on the performance of the algorithm applied to both synchronous and asynchronous circuits with data path logic.