Results 1  10
of
1,686
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
, 2003
"... One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing on the correspondenc ..."
Abstract

Cited by 1230 (15 self)
 Add to MetaCart
One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing on the correspondence between the graph Laplacian, the Laplace Beltrami operator on the manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for representing the highdimensional data. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has localitypreserving properties and a natural connection to clustering. Some potential applications and illustrative examples are discussed.
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 781 (8 self)
 Add to MetaCart
(Show Context)
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter excerpt from the author’s
doctoral thesis (Zhu, 2005). However the author plans to update the online version frequently to incorporate the latest development in the field. Please obtain the latest
version at http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
SemiSupervised Learning Using Gaussian Fields and Harmonic Functions
 IN ICML
, 2003
"... An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract

Cited by 748 (14 self)
 Add to MetaCart
(Show Context)
An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning
Learning with local and global consistency.
 In NIPS,
, 2003
"... Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intr ..."
Abstract

Cited by 669 (21 self)
 Add to MetaCart
(Show Context)
Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.
Actions as spacetime shapes
 IN ICCV
, 2005
"... Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as threedimensional shapes induced by the silhouettes in the spacetime volume. We adopt a recent approach [14] for analyzing 2D shapes and genera ..."
Abstract

Cited by 651 (4 self)
 Add to MetaCart
(Show Context)
Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as threedimensional shapes induced by the silhouettes in the spacetime volume. We adopt a recent approach [14] for analyzing 2D shapes and generalize it to deal with volumetric spacetime action shapes. Our method utilizes properties of the solution to the Poisson equation to extract spacetime features such as local spacetime saliency, action dynamics, shape structure and orientation. We show that these features are useful for action recognition, detection and clustering. The method is fast, does not require video alignment and is applicable in (but not limited to) many scenarios where the background is known. Moreover, we demonstrate the robustness of our method to partial occlusions, nonrigid deformations, significant changes in scale and viewpoint, high irregularities in the performance of an action, and low quality video.
Consistency of spectral clustering
, 2004
"... Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spe ..."
Abstract

Cited by 572 (15 self)
 Add to MetaCart
Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spectral clustering algorithms, which cluster the data with the help of eigenvectors of graph Laplacian matrices. We show that one of the two of major classes of spectral clustering (normalized clustering) converges under some very general conditions, while the other (unnormalized), is only consistent under strong additional assumptions, which, as we demonstrate, are not always satisfied in real data. We conclude that our analysis provides strong evidence for the superiority of normalized spectral clustering in practical applications. We believe that methods used in our analysis will provide a basis for future exploration of Laplacianbased methods in a statistical setting.
Locality Preserving Projection,"
 Neural Information Processing System,
, 2004
"... Abstract Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the ..."
Abstract

Cited by 415 (16 self)
 Add to MetaCart
Abstract Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA) a classical linear technique that projects the data along the directions of maximal variance. When the high dimensional data lies on a low dimensional manifold embedded in the ambient space, the Locality Preserving Projections are obtained by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. As a result, LPP shares many of the data representation properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear Embedding. Yet LPP is linear and more crucially is defined everywhere in ambient space rather than just on the training data points. This is borne out by illustrative examples on some high dimensional data sets.
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 407 (0 self)
 Add to MetaCart
(Show Context)
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Spectral grouping using the Nyström method
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2004
"... Spectral graph theoretic methods have recently shown great promise for the problem of image segmentation. However, due to the computational demands of these approaches, applications to large problems such as spatiotemporal data and high resolution imagery have been slow to appear. The contribution ..."
Abstract

Cited by 315 (1 self)
 Add to MetaCart
(Show Context)
Spectral graph theoretic methods have recently shown great promise for the problem of image segmentation. However, due to the computational demands of these approaches, applications to large problems such as spatiotemporal data and high resolution imagery have been slow to appear. The contribution of this paper is a method that substantially reduces the computational requirements of grouping algorithms based on spectral partitioning making it feasible to apply them to very large grouping problems. Our approach is based on a technique for the numerical solution of eigenfunction problems knownas the Nyström method. This method allows one to extrapolate the complete grouping solution using only a small number of "typical" samples. In doing so, we leverage the fact that there are far fewer coherent groups in a scene than pixels.
Data Clustering: 50 Years Beyond KMeans
, 2008
"... Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and m ..."
Abstract

Cited by 296 (6 self)
 Add to MetaCart
Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and methods for grouping, or clustering, objects according to measured or perceived intrinsic characteristics or similarity. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes data clustering (unsupervised learning) from classification or discriminant analysis (supervised learning). The aim of clustering is exploratory in nature to find structure in data. Clustering has a long and rich history in a variety of scientific fields. One of the most popular and simple clustering algorithms, Kmeans, was first published in 1955. In spite of the fact that Kmeans was proposed over 50 years ago and thousands of clustering algorithms have been published since then, Kmeans is still widely used. This speaks to the difficulty of designing a general purpose clustering algorithm and the illposed problem of clustering. We provide a brief overview of clustering, summarize well known clustering methods, discuss the major challenges and key issues in designing clustering algorithms, and point out some of the emerging and useful research directions, including semisupervised clustering, ensemble clustering, simultaneous feature selection, and data clustering and large scale data clustering.