Results 1  10
of
36
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadratic programming, semidefinite programming, and nonconvex and nonlinear problems, have reached varying levels of maturity. We review some of the key developments in the area, including comments on both the complexity theory and practical algorithms for linear programming, semidefinite programming, monotone linear complementarity, and convex programming over sets that can be characterized by selfconcordant barrier functions.
Fast linear iterations for distributed averaging.
 Systems & Control Letters,
, 2004
"... Abstract We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging ..."
Abstract

Cited by 433 (12 self)
 Add to MetaCart
Abstract We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear iteration can be cast as a semidefinite program, and therefore efficiently and globally solved. These optimal linear iterations are often substantially faster than several common heuristics that are based on the Laplacian of the associated graph. We show how problem structure can be exploited to speed up interiorpoint methods for solving the fastest distributed linear iteration problem, for networks with up to a thousand or so edges. We also describe a simple subgradient method that handles far larger problems, with up to one hundred thousand edges. We give several extensions and variations on the basic problem.
Semidefinite Programming and Combinatorial Optimization
 DOC. MATH. J. DMV
, 1998
"... We describe a few applications of semide nite programming in combinatorial optimization. ..."
Abstract

Cited by 106 (1 self)
 Add to MetaCart
We describe a few applications of semide nite programming in combinatorial optimization.
Grasp analysis as linear matrix inequality problems,”
 IEEE Trans. on Robotics and Automation,
, 2000
"... ..."
FIR Filter Design via Spectral Factorization and Convex Optimization
, 1997
"... We consider the design of finite impulse response (FIR) filters subject to upper and lower bounds on the frequency response magnitude. The associated optimization problems, with the filter coefficients as the variables and the frequency response bounds as constraints, are in general nonconvex. Usin ..."
Abstract

Cited by 46 (8 self)
 Add to MetaCart
We consider the design of finite impulse response (FIR) filters subject to upper and lower bounds on the frequency response magnitude. The associated optimization problems, with the filter coefficients as the variables and the frequency response bounds as constraints, are in general nonconvex. Using a change of variables and spectral factorization, we can pose such problems as linear or nonlinear convex optimization problems. As a result we can solve them efficiently (and globally) by recently developed interiorpoint methods. We describe applications to filter and equalizer design, and the related problem of antenna array weight design.
Resolution of conflicts involving many aircraft via semidefinite programming
, 1999
"... Aircraft conflict detection and resolution is currently attracting the interest of many air transportation service providers and is concerned with the following question: Given a set of airborne aircraft and their intended trajectories, what control strategy should be followed by the pilots and the ..."
Abstract

Cited by 40 (1 self)
 Add to MetaCart
Aircraft conflict detection and resolution is currently attracting the interest of many air transportation service providers and is concerned with the following question: Given a set of airborne aircraft and their intended trajectories, what control strategy should be followed by the pilots and the air traffic service provider to prevent the aircraft from coming too close to each other? This paper addresses this problem by presenting a distributed airground architecture, whereby each aircraft proposes its desired heading while a centralized air traffic control architecture resolves any conflict arising between the aircraft involved in the conflict, while minimizing the deviation between desired and conflictfree heading for each aircraft. The resolution architecture relies on a combination of convex programming and randomized searches: It is shown that aversion of the planar, multiaircraft conflict resolution problem that accounts for all possible crossing patterns among aircraft might be recast as a nonconvex, quadratically constrained quadratic program. For this type of problem, there exist efficient numerical relaxations, based on semidefinite programming, that provide lower bounds
APPLYING NEW OPTIMIZATION ALGORITHMS TO MODEL PREDICTIVE CONTROL
"... The connections between optimization and control theory have been explored by many researchers, and optimization algorithms have been applied with success to optimal control. The rapid pace of developments in model predictive control has given rise to a host of new problems to which optimization has ..."
Abstract

Cited by 39 (2 self)
 Add to MetaCart
The connections between optimization and control theory have been explored by many researchers, and optimization algorithms have been applied with success to optimal control. The rapid pace of developments in model predictive control has given rise to a host of new problems to which optimization has yet to be applied. Concurrently, developments in optimization, and especially in interiorpoint methods, have produced a new set of algorithms that may be especially helpful in this context. In this paper, we reexamine the relatively simple problem of control of linear processes subject to quadratic objectives and general linear constraints. We show how new algorithms for quadratic programming can be applied efficiently to this problem. The approach extends to several more general problems in straightforward ways.
FIR Filter Design via Semidefinite Programming and Spectral Factorization
, 1996
"... We present a new semidefinite programming approach to FIR lter design with arbitrary upper and lower bounds on the frequency response magnitude. It is shown that the constraints can be expressed as linear matrix inequalities (LMIs), and hence they can be easily handled by recent interiorpoint metho ..."
Abstract

Cited by 31 (5 self)
 Add to MetaCart
We present a new semidefinite programming approach to FIR lter design with arbitrary upper and lower bounds on the frequency response magnitude. It is shown that the constraints can be expressed as linear matrix inequalities (LMIs), and hence they can be easily handled by recent interiorpoint methods. Using this LMI formulation, we can cast several interesting filter design problems as convex or quasiconvex optimization problems, e.g., minimizing the length of the FIR filter and computing the Chebychev approximation of a desired power spectrum or a desired frequency response magnitude on a logarithmic scale.
Discretization and Localization in Successive Convex Relaxation Methods for Nonconvex Quadratic Optimization
, 2000
"... . Based on the authors' previous work which established theoretical foundations of two, conceptual, successive convex relaxation methods, i.e., the SSDP (Successive Semidefinite Programming) Relaxation Method and the SSILP (Successive SemiInfinite Linear Programming) Relaxation Method, this pa ..."
Abstract

Cited by 26 (13 self)
 Add to MetaCart
. Based on the authors' previous work which established theoretical foundations of two, conceptual, successive convex relaxation methods, i.e., the SSDP (Successive Semidefinite Programming) Relaxation Method and the SSILP (Successive SemiInfinite Linear Programming) Relaxation Method, this paper proposes their implementable variants for general quadratic optimization problems. These problems have a linear objective function c T x to be maximized over a nonconvex compact feasible region F described by a finite number of quadratic inequalities. We introduce two new techniques, "discretization" and "localization," into the SSDP and SSILP Relaxation Methods. The discretization technique makes it possible to approximate an infinite number of semiinfinite SDPs (or semiinfinite LPs) which appeared at each iteration of the original methods by a finite number of standard SDPs (or standard LPs) with a finite number of linear inequality constraints. We establish: ffl Given any open convex ...
Duality Results For Conic Convex Programming
, 1997
"... This paper presents a unified study of duality properties for the problem of minimizing a linear function over the intersection of an affine space with a convex cone infinite dimension. Existing duality results are carefully surveyed and some new duality properties are established. Examples are give ..."
Abstract

Cited by 26 (10 self)
 Add to MetaCart
This paper presents a unified study of duality properties for the problem of minimizing a linear function over the intersection of an affine space with a convex cone infinite dimension. Existing duality results are carefully surveyed and some new duality properties are established. Examples are given to illustrate these new properties. The topics covered in this paper include GordonStiemke type theorems, Farkas type theorems, perfect duality, Slater condition, regularization, Ramana's duality, and approximate dualities. The dual representations of various convex sets, convex cones and conic convex programs are also discussed.