• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

Approximating hereditary discrepancy via small width ellipsoids (2013)

by A Nikolov, K Talwar
Add To MetaCart

Tools

Sorted by:
Results 1 - 1 of 1

Combinatorial discrepancy for boxes via the ellipsoid-infinity norm

by Aleksandar Nikolov
"... The ellipsoid-infinity norm of a real m × n matrix A, denoted by ‖A‖E∞, is the minimum ` ∞ norm of an 0-centered ellipsoid E ⊆ Rm that contains all column vectors of A. This quantity, introduced by the second author and Talwar in 2013, is polynomial-time computable and approxi-mates the hereditary d ..."
Abstract - Add to MetaCart
The ellipsoid-infinity norm of a real m × n matrix A, denoted by ‖A‖E∞, is the minimum ` ∞ norm of an 0-centered ellipsoid E ⊆ Rm that contains all column vectors of A. This quantity, introduced by the second author and Talwar in 2013, is polynomial-time computable and approxi-mates the hereditary discrepancy herdiscA as follows: ‖A‖E∞/O(logm) ≤ herdiscA ≤ ‖A‖E ∞ ·O( logm). Here we show that both of the inequali-ties are asymptotically tight in the worst case, and we provide a simplified proof of the first inequality. We establish a number of favorable properties of ‖.‖E∞, such as the triangle inequality and multiplicativity w.r.t. the Kronecker (or tensor) product. We then demonstrate on several examples the power of the ellipsoid-infinity norm as a tool for proving lower and upper bounds in discrepancy theory. Most notably, we prove a new lower bound of Ω(logd−1 n) for the d-dimensional Tusnády problem, asking for the combinatorial discrepancy of an n-point set in Rd with respect to axis-parallel boxes. For d> 2, this improves the previous best lower bound, which was of order approxi-mately log(d−1)/2 n, and it comes close to the best known upper bound of O(logd+1/2 n), for which we also obtain a new, very simple proof. 1
(Show Context)

Citation Context

...ithmic approximation factor for hereditary discrepancy was found by the second author, Talwar, and Zhang [NTZ13]. Their result was further strengthened and streamlined by the second author and Talwar =-=[NT13a]-=-, who introduced a new quantity associated with a matrix A, for which we propose the name ellipsoid-infinity norm and the notation ‖A‖E∞. The ellipsoid-infinity norm was implicit in [NTZ13] and is rel...

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University