Results 1  10
of
224
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 770 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
A family of algorithms for approximate Bayesian inference
, 2001
"... One of the major obstacles to using Bayesian methods for pattern recognition has been its computational expense. This thesis presents an approximation technique that can perform Bayesian inference faster and more accurately than previously possible. This method, "Expectation Propagation," ..."
Abstract

Cited by 366 (11 self)
 Add to MetaCart
One of the major obstacles to using Bayesian methods for pattern recognition has been its computational expense. This thesis presents an approximation technique that can perform Bayesian inference faster and more accurately than previously possible. This method, "Expectation Propagation," unifies and generalizes two previous techniques: assumeddensity filtering, an extension of the Kalman filter, and loopy belief propagation, an extension of belief propagation in Bayesian networks. The unification shows how both of these algorithms can be viewed as approximating the true posterior distribution with a simpler distribution, which is close in the sense of KLdivergence. Expectation Propagation exploits the best of both algorithms: the generality of assumeddensity filtering and the accuracy of loopy belief propagation. Loopy belief propagation, because it propagates exact belief states, is useful for limited types of belief networks, such as purely discrete networks. Expectation Propagati...
Convergence of Sequential Monte Carlo Methods
 SEQUENTIAL MONTE CARLO METHODS IN PRACTICE
, 2000
"... Bayesian estimation problems where the posterior distribution evolves over time through the accumulation of data arise in many applications in statistics and related fields. Recently, a large number of algorithms and applications based on sequential Monte Carlo methods (also known as particle filter ..."
Abstract

Cited by 243 (13 self)
 Add to MetaCart
(Show Context)
Bayesian estimation problems where the posterior distribution evolves over time through the accumulation of data arise in many applications in statistics and related fields. Recently, a large number of algorithms and applications based on sequential Monte Carlo methods (also known as particle filtering methods) have appeared in the literature to solve this class of problems; see (Doucet, de Freitas & Gordon, 2001) for a survey. However, few of these methods have been proved to converge rigorously. The purpose of this paper is to address this issue. We present a general sequential Monte Carlo (SMC) method which includes most of the important features present in current SMC methods. This method generalizes and encompasses many recent algorithms. Under mild regularity conditions, we obtain rigorous convergence results for this general SMC method and therefore give theoretical backing for the validity of all the algorithms that can be obtained as particular cases of it.
Central limit theorem for sequential monte carlo methods and its application to bayesian inference
 Ann. Statist
"... “particle filters, ” refers to a general class of iterative algorithms that performs Monte Carlo approximations of a given sequence of distributions of interest (πt). We establish in this paper a central limit theorem for the Monte Carlo estimates produced by these computational methods. This result ..."
Abstract

Cited by 142 (4 self)
 Add to MetaCart
“particle filters, ” refers to a general class of iterative algorithms that performs Monte Carlo approximations of a given sequence of distributions of interest (πt). We establish in this paper a central limit theorem for the Monte Carlo estimates produced by these computational methods. This result holds under minimal assumptions on the distributions πt, and applies in a general framework which encompasses most of the sequential Monte Carlo methods that have been considered in the literature, including the resamplemove algorithm of Gilks and Berzuini [J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001) 127–146] and the residual resampling scheme. The corresponding asymptotic variances provide a convenient measurement of the precision of a given particle filter. We study, in particular, in some typical examples of Bayesian applications, whether and at which rate these asymptotic variances diverge in time, in order to assess the long term reliability of the considered algorithm. 1. Introduction. Sequential Monte Carlo methods form an emerging
Marginalized particle filters for mixed linear nonlinear statespace models
 IEEE Trans. on Signal Processing
"... AbstractThe particle filter offers a general numerical tool to approximate the posterior density function for the state in nonlinear and nonGaussian filtering problems. While the particle filter is fairly easy to implement and tune, its main drawback is that it is quite computer intensive, with t ..."
Abstract

Cited by 114 (33 self)
 Add to MetaCart
(Show Context)
AbstractThe particle filter offers a general numerical tool to approximate the posterior density function for the state in nonlinear and nonGaussian filtering problems. While the particle filter is fairly easy to implement and tune, its main drawback is that it is quite computer intensive, with the computational complexity increasing quickly with the state dimension. One remedy to this problem is to marginalize out the states appearing linearly in the dynamics. The result is that one Kalman filter is associated with each particle. The main contribution in this paper is the derivation of the details for the marginalized particle filter for a general nonlinear statespace model. Several important special cases occurring in typical signal processing applications will also be discussed. The marginalized particle filter is applied to an integrated navigation system for aircraft. It is demonstrated that the complete highdimensional system can be based on a particle filter using marginalization for all but three states. Excellent performance on real flight data is reported.
Monte Carlo Methods for Tempo Tracking and Rhythm Quantization
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 2003
"... We present a probabilistic generarive model for timing deviations in expressive music performance. The structure of the proposed model is equivalent to a switching state space model. The switch variables correspond to discrete note locations as in a musical score. The continuous hidden variables ..."
Abstract

Cited by 68 (12 self)
 Add to MetaCart
(Show Context)
We present a probabilistic generarive model for timing deviations in expressive music performance. The structure of the proposed model is equivalent to a switching state space model. The switch variables correspond to discrete note locations as in a musical score. The continuous hidden variables denote the tempo. We formulate two well known music recognition problems, namely tempo tracking and automatic transcription (rhythm quantization) as filtering and maximum a posteriori (MAP) state estimation tasks. Ex act computation of posterior features such as the MAP state is intractable in this model class, so we introduce Monte Carlo methods for integration and optimization. We compare Markov Chain Monte Carlo (MCMC) methods (such as Gibbs sampling, simulated annealing and iterative improvement) and sequential Monte Carlo methods (particle filters). Our simulation results suggest better results with sequential methods. The methods can be applied in both online and batch scenarios such as tempo tracking and transcription and are thus potentially useful in a number of music applications such as adaptive automatic accompaniment, score typesetting and music information retrieval.
Modeling and Decoding Motor Cortical Activity Using a Switching Kalman Filter
, 2004
"... We present a Switching Kalman Filter Model for the realtime inference of hand kinematics from a population of motor cortical neurons. Firing rates are modeled as a Gaussian mixture where the mean of each Gaussian component is a linear function of hand kinematics. A "hidden state" models th ..."
Abstract

Cited by 65 (8 self)
 Add to MetaCart
We present a Switching Kalman Filter Model for the realtime inference of hand kinematics from a population of motor cortical neurons. Firing rates are modeled as a Gaussian mixture where the mean of each Gaussian component is a linear function of hand kinematics. A "hidden state" models the probability of each mixture component and evolves over time in a Markov chain. The model generalizes previous encoding and decoding methods, addresses the nonGaussian nature of firing rates, and can cope with crudely sorted neural data common in online prosthetic applications.
Particle filters for mixture models with an unknown number of components
 Statistics and Computing
, 2003
"... We consider the analysis of data under mixture models where the number of components in the mixture is unknown. We concentrate on mixture Dirichlet process models, and in particular we consider such models under conjugate priors. This conjugacy enables us to integrate out many of the parameters in t ..."
Abstract

Cited by 59 (3 self)
 Add to MetaCart
(Show Context)
We consider the analysis of data under mixture models where the number of components in the mixture is unknown. We concentrate on mixture Dirichlet process models, and in particular we consider such models under conjugate priors. This conjugacy enables us to integrate out many of the parameters in the model, and to discretize the posterior distribution. Particle filters are particularly well suited to such discrete problems, and we propose the use of the particle filter of Fearnhead and Clifford for this problem. The performance of this particle filter, when analyzing both simulated and real data from a Gaussian mixture model, is uniformly better than the particle filter algorithm of Chen and Liu. In many situations it outperforms a Gibbs Sampler. We also show how models without the required amount of conjugacy can be efficiently analyzed by the same particle filter algorithm.
Particle learning and smoothing
 Statistical Science
, 2010
"... In this paper we develop particle learning (PL) methods for state filtering, sequential parameter learning and smoothing in a general class of nonlinear state space models. The approach extends existing particle methods by incorporating static parameters and utilizing sufficient statistics for the p ..."
Abstract

Cited by 47 (15 self)
 Add to MetaCart
(Show Context)
In this paper we develop particle learning (PL) methods for state filtering, sequential parameter learning and smoothing in a general class of nonlinear state space models. The approach extends existing particle methods by incorporating static parameters and utilizing sufficient statistics for the parameters and/or the states as particles. State smoothing with parameter uncertainty is also solved as a by product of particle learning. In a number of applications, we show that our algorithms outperform existing particle filtering algorithms as well as MCMC.
Particle filter theory and practice with positioning applications
 IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE
, 2010
"... ..."