Results 1  10
of
408
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
(Show Context)
This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in smallworld networks, Markov processes and gossipbased algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with latticetype nearest neighbor interactions. Simulation results are presented that demonstrate the role of smallworld effects on the speed of consensus algorithms and cooperative control of multivehicle formations.
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The decoding of both codes can be tackled with a practical sumproduct algorithm. We prove that these codes are "very good," in that sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit. This result holds not only for the binarysymmetric channel but also for any channel with symmetric stationary ergodic noise. We give experimental results for binarysymmetric channels and Gaussian channels demonstrating that practical performance substantially better than that of standard convolutional and concatenated codes can be achieved; indeed, the performance of Gallager codes is almost as close to the Shannon limit as that of turbo codes.
Expander Codes
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1996
"... We present a new class of asymptotically good, linear errorcorrecting codes based upon expander graphs. These codes have linear time sequential decoding algorithms, logarithmic time parallel decoding algorithms with a linear number of processors, and are simple to understand. We present both random ..."
Abstract

Cited by 346 (10 self)
 Add to MetaCart
We present a new class of asymptotically good, linear errorcorrecting codes based upon expander graphs. These codes have linear time sequential decoding algorithms, logarithmic time parallel decoding algorithms with a linear number of processors, and are simple to understand. We present both randomized and explicit constructions for some of these codes. Experimental results demonstrate the extremely good performance of the randomly chosen codes.
Expander Flows, Geometric Embeddings and Graph Partitioning
 IN 36TH ANNUAL SYMPOSIUM ON THE THEORY OF COMPUTING
, 2004
"... We give a O( log n)approximation algorithm for sparsest cut, balanced separator, and graph conductance problems. This improves the O(log n)approximation of Leighton and Rao (1988). We use a wellknown semidefinite relaxation with triangle inequality constraints. Central to our analysis is a ..."
Abstract

Cited by 319 (18 self)
 Add to MetaCart
We give a O( log n)approximation algorithm for sparsest cut, balanced separator, and graph conductance problems. This improves the O(log n)approximation of Leighton and Rao (1988). We use a wellknown semidefinite relaxation with triangle inequality constraints. Central to our analysis is a geometric theorem about projections of point sets in , whose proof makes essential use of a phenomenon called measure concentration.
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 279 (10 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs. 1
Regular and Irregular Progressive EdgeGrowth Tanner Graphs
 IEEE TRANS. INFORM. THEORY
, 2003
"... We propose a general method for constructing Tanner graphs having a large girth by progressively establishing edges or connections between symbol and check nodes in an edgebyedge manner, called progressive edgegrowth (PEG) construction. Lower bounds on the girth of PEG Tanner graphs and on the mi ..."
Abstract

Cited by 192 (0 self)
 Add to MetaCart
We propose a general method for constructing Tanner graphs having a large girth by progressively establishing edges or connections between symbol and check nodes in an edgebyedge manner, called progressive edgegrowth (PEG) construction. Lower bounds on the girth of PEG Tanner graphs and on the minimum distance of the resulting lowdensity paritycheck (LDPC) codes are derived in terms of parameters of the graphs. The PEG construction attains essentially the same girth as Gallager's explicit construction for regular graphs, both of which meet or exceed the ErdosSachs bound. Asymptotic analysis of a relaxed version of the PEG construction is presented. We describe an empirical approach using a variant of the "downhill simplex" search algorithm to design irregular PEG graphs for short codes with fewer than a thousand of bits, complementing the design approach of "density evolution" for larger codes. Encoding of LDPC codes based on the PEG construction is also investigated. We show how to exploit the PEG principle to obtain LDPC codes that allow linear time encoding. We also investigate regular and irregular LDPC codes using PEG Tanner graphs but allowing the symbol nodes to take values over GF(q), q > 2. Analysis and simulation demonstrate that one can obtain better performance with increasing field size, which contrasts with previous observations.
Information Theory and Communication Networks: An Unconsummated Union
 IEEE Trans. Inform. Theory
, 1998
"... Information theory has not yet had a direct impact on networking, although there are similarities in concepts and methodologies that have consistently attracted the attention of researchers from both fields. In this paper, we review several topics that are related to communication networks and that ..."
Abstract

Cited by 183 (7 self)
 Add to MetaCart
(Show Context)
Information theory has not yet had a direct impact on networking, although there are similarities in concepts and methodologies that have consistently attracted the attention of researchers from both fields. In this paper, we review several topics that are related to communication networks and that have an information theoretic flavor, including multiaccess protocols, timing channels, effective bandwidth of bursty data sources, deterministic constraints on datastreams, queueing theory, and switching networks. Keywords Communication networks, multiaccess, effective bandwidth, switching I. INTRODUCTION Information theory is the conscience of the theory of communication; it has defined the "playing field" within which communication systems can be studied and understood. It has provided the spawning grounds for the fields of coding, compression, encryption, detection, and modulation and it has enabled the design and evaluation of systems whose performance is pushing the limits of wha...
A proof of Alon’s second eigenvalue conjecture
, 2003
"... A dregular graph has largest or first (adjacency matrix) eigenvalue λ1 = d. Consider for an even d ≥ 4, a random dregular graph model formed from d/2 uniform, independent permutations on {1,...,n}. We shall show that for any ɛ>0 we have all eigenvalues aside from λ1 = d are bounded by 2 √ d − 1 ..."
Abstract

Cited by 168 (1 self)
 Add to MetaCart
A dregular graph has largest or first (adjacency matrix) eigenvalue λ1 = d. Consider for an even d ≥ 4, a random dregular graph model formed from d/2 uniform, independent permutations on {1,...,n}. We shall show that for any ɛ>0 we have all eigenvalues aside from λ1 = d are bounded by 2 √ d − 1 +ɛwith probability 1 − O(n−τ), where τ = ⌈ � √ d − 1+1 � /2⌉−1. We also show that this probability is at most 1 − c/nτ ′, for a constant c and a τ ′ that is either τ or τ +1 (“more often ” τ than τ + 1). We prove related theorems for other models of random graphs, including models with d odd. These theorems resolve the conjecture of Alon, that says that for any ɛ>0andd, the second largest eigenvalue of “most ” random dregular graphs are at most 2 √ d − 1+ɛ (Alon did not specify precisely what “most ” should mean or what model of random graph one should take). 1
Undirected STConnectivity in LogSpace
, 2004
"... We present a deterministic, logspace algorithm that solves stconnectivity in undirected graphs. The previous bound on the space complexity of undirected stconnectivity was log 4/3 (·) obtained by Armoni, TaShma, Wigderson and Zhou [ATSWZ00]. As undirected stconnectivity is complete for the clas ..."
Abstract

Cited by 166 (3 self)
 Add to MetaCart
We present a deterministic, logspace algorithm that solves stconnectivity in undirected graphs. The previous bound on the space complexity of undirected stconnectivity was log 4/3 (·) obtained by Armoni, TaShma, Wigderson and Zhou [ATSWZ00]. As undirected stconnectivity is complete for the class of problems solvable by symmetric, nondeterministic, logspace computations (the class SL), this algorithm implies that SL = L (where L is the class of problems solvable by deterministic logspace computations). Our algorithm also implies logspace constructible universaltraversal sequences for graphs with restricted labelling and logspace constructible universalexploration sequences for general graphs.