Results 1  10
of
502
High dimensional graphs and variable selection with the Lasso
 ANNALS OF STATISTICS
, 2006
"... The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a ..."
Abstract

Cited by 751 (23 self)
 Add to MetaCart
The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a computationally attractive alternative to standard covariance selection for sparse highdimensional graphs. Neighborhood selection estimates the conditional independence restrictions separately for each node in the graph and is hence equivalent to variable selection for Gaussian linear models. We show that the proposed neighborhood selection scheme is consistent for sparse highdimensional graphs. Consistency hinges on the choice of the penalty parameter. The oracle value for optimal prediction does not lead to a consistent neighborhood estimate. Controlling instead the probability of falsely joining some distinct connectivity components of the graph, consistent estimation for sparse graphs is achieved (with exponential rates), even when the number of variables grows as the number of observations raised to an arbitrary power.
Asymptotics for Lassotype estimators
, 2000
"... this paper, we consider the asymptotic behaviour of regression estimators that minimize the residual sum of squares plus a penalty proportional to ..."
Abstract

Cited by 254 (3 self)
 Add to MetaCart
this paper, we consider the asymptotic behaviour of regression estimators that minimize the residual sum of squares plus a penalty proportional to
Large Sample Sieve Estimation of SemiNonparametric Models
 Handbook of Econometrics
, 2007
"... Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; seminonparametric models are more flexible and robust, but lead to other complications such as introducing infinite dimensional parameter spaces that may not be compact. The method o ..."
Abstract

Cited by 181 (19 self)
 Add to MetaCart
Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; seminonparametric models are more flexible and robust, but lead to other complications such as introducing infinite dimensional parameter spaces that may not be compact. The method of sieves provides one way to tackle such complexities by optimizing an empirical criterion function over a sequence of approximating parameter spaces, called sieves, which are significantly less complex than the original parameter space. With different choices of criteria and sieves, the method of sieves is very flexible in estimating complicated econometric models. For example, it can simultaneously estimate the parametric and nonparametric components in seminonparametric models with or without constraints. It can easily incorporate prior information, often derived from economic theory, such as monotonicity, convexity, additivity, multiplicity, exclusion and nonnegativity. This chapter describes estimation of seminonparametric econometric models via the method of sieves. We present some general results on the large sample properties of the sieve estimates, including consistency of the sieve extremum estimates, convergence rates of the sieve Mestimates, pointwise normality of series estimates of regression functions, rootn asymptotic normality and efficiency of sieve estimates of smooth functionals of infinite dimensional parameters. Examples are used to illustrate the general results.
Local Rademacher complexities
 Annals of Statistics
, 2002
"... We propose new bounds on the error of learning algorithms in terms of a datadependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a ..."
Abstract

Cited by 174 (21 self)
 Add to MetaCart
(Show Context)
We propose new bounds on the error of learning algorithms in terms of a datadependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.
Empirical margin distributions and bounding the generalization error of combined classifiers
 Ann. Statist
, 2002
"... Dedicated to A.V. Skorohod on his seventieth birthday We prove new probabilistic upper bounds on generalization error of complex classifiers that are combinations of simple classifiers. Such combinations could be implemented by neural networks or by voting methods of combining the classifiers, such ..."
Abstract

Cited by 160 (11 self)
 Add to MetaCart
(Show Context)
Dedicated to A.V. Skorohod on his seventieth birthday We prove new probabilistic upper bounds on generalization error of complex classifiers that are combinations of simple classifiers. Such combinations could be implemented by neural networks or by voting methods of combining the classifiers, such as boosting and bagging. The bounds are in terms of the empirical distribution of the margin of the combined classifier. They are based on the methods of the theory of Gaussian and empirical processes (comparison inequalities, symmetrization method, concentration inequalities) and they improve previous results of Bartlett (1998) on bounding the generalization error of neural networks in terms of ℓ1norms of the weights of neurons and of Schapire, Freund, Bartlett and Lee (1998) on bounding the generalization error of boosting. We also obtain rates of convergence in Lévy distance of empirical margin distribution to the true margin distribution uniformly over the classes of classifiers and prove the optimality of these rates.
Covariance regularization by thresholding
, 2007
"... This paper considers regularizing a covariance matrix of p variables estimated from n observations, by hard thresholding. We show that the thresholded estimate is consistent in the operator norm as long as the true covariance matrix is sparse in a suitable sense, the variables are Gaussian or subGa ..."
Abstract

Cited by 154 (11 self)
 Add to MetaCart
(Show Context)
This paper considers regularizing a covariance matrix of p variables estimated from n observations, by hard thresholding. We show that the thresholded estimate is consistent in the operator norm as long as the true covariance matrix is sparse in a suitable sense, the variables are Gaussian or subGaussian, and (log p)/n → 0, and obtain explicit rates. The results are uniform over families of covariance matrices which satisfy a fairly natural notion of sparsity. We discuss an intuitive resampling scheme for threshold selection and prove a general crossvalidation result that justifies this approach. We also compare thresholding to other covariance estimators in simulations and on an example from climate data. 1. Introduction. Estimation
Timedependent ROC curves for censored survival data and a diagnostic marker. Biometrics 2000;56:337
"... SUMMARY. ROC curves are a popular method for displaying sensitivity and specificity of a continuous diagnostic marker, X, for a binary disease variable, D. However, many disease outcomes are time dependent, D ( t) , and ROC curves that vary as a function of time may be more appropriate. A common e ..."
Abstract

Cited by 130 (5 self)
 Add to MetaCart
SUMMARY. ROC curves are a popular method for displaying sensitivity and specificity of a continuous diagnostic marker, X, for a binary disease variable, D. However, many disease outcomes are time dependent, D ( t) , and ROC curves that vary as a function of time may be more appropriate. A common example of a timedependent variable is vital status, where D(t) = 1 if a patient has died prior t o time t and zero otherwise. We propose summarizing the discrimination potential of a marker X, measured at baseline ( t = O) , by calculating ROC curves for cumulative disease or death incidence by time t, which we denote as ROC(t). A typical complexity with survival data is that observations may be censored. Two ROC curve estimators are proposed that can accommodate censored data. A simple estimator is based on using the KaplanMeier estimator for each possible subset X> c. However, this estimator does not guarantee the necessary condition that sensitivity and specificity are monotone in X. An alternative estimator that does guarantee monotonicity is based on a nearest neighbor estimator for the bivariate distribution function of ( X, T) , where T represents survival time (Akritas, M. J., 1994, Annuls of Statistics 22, 12991327). We present an example where ROC(t) is used to compare a standard and a modified flow cytometry measurement for predicting survival after detection of breast cancer and an example where the ROC(t) curve displays the impact of modifying eligibility criteria for sample size and power in HIV prevention trials.
Convergence rates of posterior distributions
 Ann. Statist
, 2000
"... We consider the asymptotic behavior of posterior distributions and Bayes estimators for infinitedimensional statistical models. We give general results on the rate of convergence of the posterior measure. These are applied to several examples, including priors on finite sieves, logspline models, D ..."
Abstract

Cited by 106 (14 self)
 Add to MetaCart
(Show Context)
We consider the asymptotic behavior of posterior distributions and Bayes estimators for infinitedimensional statistical models. We give general results on the rate of convergence of the posterior measure. These are applied to several examples, including priors on finite sieves, logspline models, Dirichlet processes and interval censoring. 1. Introduction. Suppose
Asymptotic properties of bridge estimators in sparse highdimensional regression models
 Ann. Statist
, 2007
"... We study the asymptotic properties of bridge estimators in sparse, highdimensional, linear regression models when the number of covariates may increase to infinity with the sample size. We are particularly interested in the use of bridge estimators to distinguish between covariates whose coefficien ..."
Abstract

Cited by 98 (10 self)
 Add to MetaCart
(Show Context)
We study the asymptotic properties of bridge estimators in sparse, highdimensional, linear regression models when the number of covariates may increase to infinity with the sample size. We are particularly interested in the use of bridge estimators to distinguish between covariates whose coefficients are zero and covariates whose coefficients are nonzero. We show that under appropriate conditions, bridge estimators correctly select covariates with nonzero coefficients with probability converging to one and that the estimators of nonzero coefficients have the same asymptotic distribution that they would have if the zero coefficients were known in advance. Thus, bridge estimators have an oracle property in the sense of Fan and Li [J. Amer. Statist. Assoc. 96 (2001) 1348–1360] and Fan and Peng [Ann. Statist. 32 (2004) 928–961]. In general, the oracle property holds only if the number of covariates is smaller than the sample size. However, under a partial orthogonality condition in which the covariates of the zero coefficients are uncorrelated or weakly correlated with the covariates of nonzero coefficients, we show that marginal bridge estimators can correctly distinguish between covariates with nonzero and zero coefficients with probability converging to one even when the number of covariates is greater than the sample size.