Results 1  10
of
98
Tabu Search  Part I
, 1989
"... This paper presents the fundamental principles underlying tabu search as a strategy for combinatorial optimization problems. Tabu search has achieved impressive practical successes in applications ranging from scheduling and computer channel balancing to cluster analysis and space planning, and more ..."
Abstract

Cited by 652 (10 self)
 Add to MetaCart
This paper presents the fundamental principles underlying tabu search as a strategy for combinatorial optimization problems. Tabu search has achieved impressive practical successes in applications ranging from scheduling and computer channel balancing to cluster analysis and space planning, and more recently has demonstrated its value in treating classical problems such as the traveling salesman and graph coloring problems. Nevertheless, the approach is still in its infancy, and a good deal remains to be discovered about its most effective forms of implementation and about the range of problems for which it is best suited. This paper undertakes to present the major ideas and findings to date, and to indicate challenges for future research. Part I of this study indicates the basic principles, ranging from the shortterm memory process at the core of the search to the intermediate and long term memory processes for intensifying and diversifying the search. Included are illustrative data structures for implementing the tabu conditions (and associated aspiration criteria) that underlie these processes. Part I concludes with a discussion of probabilistic tabu search and a summary of computational experience for a variety of applications. Part I1 of this study (to appear in a subsequent issue) examines more advanced considerations, applying the basic ideas to special settings and outlining a dynamic move structure to insure finiteness. Part I1 also describes tabu search methods for solving mixed integer programming problems and gives a brief summary of additional practical experience, including the use of tabu search to guide other types of processes, such as those
Approximating the permanent
 SIAM J. Computing
, 1989
"... Abstract. A randomised approximation scheme for the permanent of a 01 matrix is presented. The task of estimating a permanent is reduced to that of almost uniformly generating perfect matchings in a graph; the latter is accomplished by simulating a Markov chain whose states are the matchings in the ..."
Abstract

Cited by 355 (26 self)
 Add to MetaCart
(Show Context)
Abstract. A randomised approximation scheme for the permanent of a 01 matrix is presented. The task of estimating a permanent is reduced to that of almost uniformly generating perfect matchings in a graph; the latter is accomplished by simulating a Markov chain whose states are the matchings in the graph. For a wide class of 01 matrices the approximation scheme is fullypolynomial, i.e., runs in time polynomial in the size of the matrix and a parameter that controls the accuracy of the output. This class includes all dense matrices (those that contain sufficiently many l’s) and almost all sparse matrices in some reasonable probabilistic model for 01 matrices of given density. For the approach sketched above to be computationally efficient, the Markov chain must be rapidly mixing: informally, it must converge in a short time to its stationary distribution. A major portion of the paper is devoted to demonstrating that the matchings chain is rapidly mixing, apparently the first such result for a Markov chain with genuinely complex structure. The techniques used seem to have general applicability, and are applied again in the paper to validate a fullypolynomial randomised approximation scheme for the partition function of an arbitrary monomerdimer system.
Metaheuristics in combinatorial optimization: Overview and conceptual comparison
 ACM COMPUTING SURVEYS
, 2003
"... The field of metaheuristics for the application to combinatorial optimization problems is a rapidly growing field of research. This is due to the importance of combinatorial optimization problems for the scientific as well as the industrial world. We give a survey of the nowadays most important meta ..."
Abstract

Cited by 294 (16 self)
 Add to MetaCart
The field of metaheuristics for the application to combinatorial optimization problems is a rapidly growing field of research. This is due to the importance of combinatorial optimization problems for the scientific as well as the industrial world. We give a survey of the nowadays most important metaheuristics from a conceptual point of view. We outline the different components and concepts that are used in the different metaheuristics in order to analyze their similarities and differences. Two very important concepts in metaheuristics are intensification and diversification. These are the two forces that largely determine the behaviour of a metaheuristic. They are in some way contrary but also complementary to each other. We introduce a framework, that we call the I&D frame, in order to put different intensification and diversification components into relation with each other. Outlining the advantages and disadvantages of different metaheuristic approaches we conclude by pointing out the importance of hybridization of metaheuristics as well as the integration of metaheuristics and other methods for optimization.
VLSI cell placement techniques
 ACM Computing Surveys
, 1991
"... VLSI cell placement problem is known to be NP complete. A wide repertoire of heuristic algorithms exists in the literature for efficiently arranging the logic cells on a VLSI chip. The objective of this paper is to present a comprehensive survey of the various cell placement techniques, with emphasi ..."
Abstract

Cited by 93 (0 self)
 Add to MetaCart
VLSI cell placement problem is known to be NP complete. A wide repertoire of heuristic algorithms exists in the literature for efficiently arranging the logic cells on a VLSI chip. The objective of this paper is to present a comprehensive survey of the various cell placement techniques, with emphasis on standard ce11and macro
Network Correlated Data Gathering With Explicit Communication: NPCompleteness and Algorithms
 IEEE/ACM Transactions on Networking
, 2006
"... We consider the problem of correlated data gathering by a network with a sink node and a tree based communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. For source coding of correlated data, we co ..."
Abstract

Cited by 68 (9 self)
 Add to MetaCart
We consider the problem of correlated data gathering by a network with a sink node and a tree based communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. For source coding of correlated data, we consider a joint entropy based coding model with explicit communication where coding is simple and the transmission structure optimization is difficult. We first formulate the optimization problem definition in the general case and then we study further a network setting where the entropy conditioning at nodes does not depend on the amount of side information, but only on its availability. We prove that even in this simple case, the optimization problem is NPhard. We propose some efficient, scalable, and distributed heuristic approximation algorithms for solving this problem and show by numerical simulations that the total transmission cost can be significantly improved over direct transmission or the shortest path tree. We also present an approximation algorithm that provides a tree transmission structure with total cost within a constant factor from the optimal. 1
Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems
 SIAM Journal on Optimization
, 2004
"... A new class of algorithms for solving nonlinearly constrained mixed variable optimization problems is presented. This class combines and extends the AudetDennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPSfilter algorithms for gene ..."
Abstract

Cited by 55 (8 self)
 Add to MetaCart
(Show Context)
A new class of algorithms for solving nonlinearly constrained mixed variable optimization problems is presented. This class combines and extends the AudetDennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPSfilter algorithms for general nonlinear constraints. In generalizing existing algorithms, new theoretical convergence results are presented that reduce seamlessly to existing results for more specific classes of problems. While no local continuity or smoothness assumptions are required to apply the algorithm, a hierarchy of theoretical convergence results based on the Clarke calculus is given, in which local smoothness dictate what can be proved about certain limit points generated by the algorithm. To demonstrate the usefulness of the algorithm, the algorithm is applied to the design of a loadbearing thermal insulation system. We believe this is the first algorithm with provable convergence results to directly target this class of problems.
A SearchBased Automated TestData Generation Framework for Safety Critical Software
, 2000
"... Software ..."
Triangulation of Graphs  Algorithms Giving Small Total State Space
, 1990
"... The problem of achieving small total state space for triangulated belief graphs (networks) is considered. It is an NPcomplete problem to find a triangulation with minimum state space. Our interest ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
The problem of achieving small total state space for triangulated belief graphs (networks) is considered. It is an NPcomplete problem to find a triangulation with minimum state space. Our interest
Hybrid Genetic Algorithm, Simulated Annealing and Tabu Search Methods for Vehicle Routing Problems with Time Windows
, 1993
"... The Vehicle Routing Problem with Time Windows (VRPTW) involves servicing a set of customers, with earliest and latest time deadlines, with varying demands using capacitated vehicles with limited travel times. The objective of the problem is to service all customers while minimizing the number of veh ..."
Abstract

Cited by 41 (1 self)
 Add to MetaCart
The Vehicle Routing Problem with Time Windows (VRPTW) involves servicing a set of customers, with earliest and latest time deadlines, with varying demands using capacitated vehicles with limited travel times. The objective of the problem is to service all customers while minimizing the number of vehicles and travel distance without violating the capacity and travel time of the vehicles and customer time constraints. In this paper we describe a λinterchange mechanism that moves customers between routes to generate neighborhood solutions for the VRPTW. The λinterchange neighborhood is searched using Simulated Annealing and Tabu Search strategies. The initial solutions to the VRPTW are obtained using the PushForward Insertion heuristic and a Genetic Algorithm based sectoring heuristic. The hybrid combination of the implemented heuristics, collectively known as the GenSAT system, were used to solve 60 problems from the literature with customer sizes varying from 100 to 417 customers. The computational results of GenSAT obtained new best solutions for 40 test problems. For the remaining 20 test problems, 11 solutions obtained by the GenSAT system equal previously known best solutions. The average performance of GenSAT is significantly better than known competing heuristics. For known optimal solutions to the VRPTW problems, the GenSAT system obtained the optimal number of vehicles.
Capacitated Clustering Problems by Hybrid Simulated Annealing and Tabu Search
 INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
, 1994
"... The capacitated clustering problem (CCP) is the problem in which a given set of weighted objects is to be partitioned into clusters so that the total weight of objects in each cluster is less than a given value (cluster 'capacity'). The objective is to minimize the total scatter of objects ..."
Abstract

Cited by 40 (3 self)
 Add to MetaCart
(Show Context)
The capacitated clustering problem (CCP) is the problem in which a given set of weighted objects is to be partitioned into clusters so that the total weight of objects in each cluster is less than a given value (cluster 'capacity'). The objective is to minimize the total scatter of objects from the 'centre ' of the cluster to which they have been allocated. A simple constructive heuristic, a Rinterchange generation mechanism, a hybrid simulated annealing (SA) and tabu search (TS) algorithm which has computationally desirable features using a new nonmonotonic cooling schedule, are developed. A classification of the existing SA cooling schedules is presented. The effects on the final solution quality of the initial solutions, the cooling schedule parameters and the neighbourhood search strategies are investigated. Computational results on randomly generated problems with size ranging from 50 to 1 0 0 customers indicate that the hybrid SA/TS algorithm outperforms previous simulated annealing algorithms, a simple tabu search and local descent algorithms.