Results 1  10
of
62
Optimal Approximation for the Submodular Welfare Problem in the value oracle model
 STOC'08
, 2008
"... In the Submodular Welfare Problem, m items are to be distributed among n players with utility functions wi: 2 [m] → R+. The utility functions are assumed to be monotone and submodular. Assuming that player i receives a set of items Si, we wish to maximize the total utility Pn i=1 wi(Si). In this pap ..."
Abstract

Cited by 122 (11 self)
 Add to MetaCart
In the Submodular Welfare Problem, m items are to be distributed among n players with utility functions wi: 2 [m] → R+. The utility functions are assumed to be monotone and submodular. Assuming that player i receives a set of items Si, we wish to maximize the total utility Pn i=1 wi(Si). In this paper, we work in the value oracle model where the only access to the utility functions is through a black box returning wi(S) for a given set S. Submodular Welfare is in fact a special case of the more general problem of submodular maximization subject to a matroid constraint: max{f(S) : S ∈ I}, where f is monotone submodular and I is the collection of independent sets in some matroid. For both problems, a greedy algorithm is known to yield a 1/2approximation [21, 16]. In special cases where the matroid is uniform (I = {S: S  ≤ k}) [20] or the submodular function is of a special type [4, 2], a (1 − 1/e)approximation has been achieved and this is optimal for these problems in the value oracle model [22, 6, 15]. A (1 − 1/e)approximation for the general Submodular Welfare Problem has been known only in a stronger demand oracle model [4], where in fact 1 − 1/e can be improved [9]. In this paper, we develop a randomized continuous greedy algorithm which achieves a (1 − 1/e)approximation for the Submodular Welfare Problem in the value oracle model. We also show that the special case of n equal players is approximation resistant, in the sense that the optimal (1 − 1/e)approximation is achieved by a uniformly random solution. Using the pipage rounding technique [1, 2], we obtain a (1 − 1/e)approximation for submodular maximization subject to any matroid constraint. The continuous greedy algorithm has a potential of wider applicability, which we demonstrate on the examples of the Generalized Assignment Problem and the AdWords Assignment Problem.
Maximizing a Submodular Set Function subject to a Matroid Constraint (Extended Abstract)
 PROC. OF 12 TH IPCO
, 2007
"... Let f: 2 N → R + be a nondecreasing submodular set function, and let (N, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2approximation [9] for this problem. It is also known, via a reduction from the maxkcover problem, that there is no (1 ..."
Abstract

Cited by 114 (12 self)
 Add to MetaCart
(Show Context)
Let f: 2 N → R + be a nondecreasing submodular set function, and let (N, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2approximation [9] for this problem. It is also known, via a reduction from the maxkcover problem, that there is no (1 − 1/e + ɛ)approximation for any constant ɛ> 0, unless P = NP [6]. In this paper, we improve the 1/2approximation to a (1−1/e)approximation, when f is a sum of weighted rank functions of matroids. This class of functions captures a number of interesting problems including set coverage type problems. Our main tools are the pipage rounding technique of Ageev and Sviridenko [1] and a probabilistic lemma on monotone submodular functions that might be of independent interest. We show that the generalized assignment problem (GAP) is a special case of our problem; although the reduction requires N  to be exponential in the original problem size, we are able to interpret the recent (1 − 1/e)approximation for GAP by Fleischer et al. [10] in our framework. This enables us to obtain a (1 − 1/e)approximation for variants of GAP with more complex constraints.
Approximation Algorithms for Data Placement in Arbitrary Networks
 in Proceedings of the 12th Annual ACMSIAM Symposium on Discrete Algorithms
, 2001
"... Abstract We develop approximation algorithms for the problem of placing replicated data in arbitrary networks, where the nodes may both issue requests for data objects and have capacity for storing data objects, so as to minimize the average dataaccess cost. We introduce the data placement problem ..."
Abstract

Cited by 81 (4 self)
 Add to MetaCart
(Show Context)
Abstract We develop approximation algorithms for the problem of placing replicated data in arbitrary networks, where the nodes may both issue requests for data objects and have capacity for storing data objects, so as to minimize the average dataaccess cost. We introduce the data placement problem tomodel this problem. We have a set of caches F, a set of clients D, and a set of data objects O. Each cache i can store at most ui data objects. Each client j 2 D has demand dj for a specific data object o(j) 2 O and has to be assigned to a cache that stores that object. Storing an object o in cache i incurs astorage cost of f oi, and assigning client j to cache i incurs an access cost of djcij. The goal is to find aplacement of the data objects to caches respecting the capacity constraints, and an assignment of clients
Online budgeted matching in random input models with applications to adwords
 In SODA 2008
"... We study an online assignment problem, motivated by Adwords Allocation, in which queries are to be assigned to bidders with budget constraints. We analyze the performance of the Greedy algorithm (which assigns each query to the highest bidder) in a randomized input model with queries arriving in a r ..."
Abstract

Cited by 72 (10 self)
 Add to MetaCart
We study an online assignment problem, motivated by Adwords Allocation, in which queries are to be assigned to bidders with budget constraints. We analyze the performance of the Greedy algorithm (which assigns each query to the highest bidder) in a randomized input model with queries arriving in a random permutation. Our main result is a tight analysis of Greedy in this model showing that it has a competitive ratio of 1 − 1/e for maximizing the value of the assignment. We also consider the more standard i.i.d. model of input, and show that our analysis holds there as well. This is to be contrasted with the worst case analysis of [MSVV05] which shows that Greedy has a ratio of 1/2, and that the optimal algorithm presented there has a ratio of 1 − 1/e. The analysis of Greedy is important in the Adwords setting because it is the natural allocation algorithm for an auctionstyle process. From a theoretical perspective, our result simplifies and generalizes the classic algorithm of Karp, Vazirani and Vazirani for online bipartite matching. Our results include a new proof to show that the Ranking algorithm of [KVV90] has a ratio of 1 − 1/e in the worst case. It has been recently discovered [KV07] (independent of our results) that one of the crucial lemmas in [KVV90], related to a certain reduction, is incorrect. Our proof is direct, in that it does not go via such a reduction, which also enables us to generalize the analysis to our online assignment problem. 1
Maximizing a Monotone Submodular Function subject to a Matroid Constraint
, 2008
"... Let f: 2 X → R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2 approximation [14] for this problem. For certain special cases, e.g. max S≤k f(S), the greedy algorithm yields a (1 − 1/e)app ..."
Abstract

Cited by 63 (0 self)
 Add to MetaCart
Let f: 2 X → R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2 approximation [14] for this problem. For certain special cases, e.g. max S≤k f(S), the greedy algorithm yields a (1 − 1/e)approximation. It is known that this is optimal both in the value oracle model (where the only access to f is through a black box returning f(S) for a given set S) [28], and also for explicitly posed instances assuming P � = NP [10]. In this paper, we provide a randomized (1 − 1/e)approximation for any monotone submodular function and an arbitrary matroid. The algorithm works in the value oracle model. Our main tools are a variant of the pipage rounding technique of Ageev and Sviridenko [1], and a continuous greedy process that might be of independent interest. As a special case, our algorithm implies an optimal approximation for the Submodular Welfare Problem in the value oracle model [32]. As a second application, we show that the Generalized Assignment Problem (GAP) is also a special case; although the reduction requires X  to be exponential in the original problem size, we are able to achieve a (1 − 1/e − o(1))approximation for GAP, simplifying previously known algorithms. Additionally, the reduction enables us to obtain approximation algorithms for variants of GAP with more general constraints.
An Approximation Algorithm for MaxMin Fair Allocation of Indivisible goods
 In Proc. of the ACM Symposium on Theory of Computing (STOC
"... In this paper, we give the first approximation algorithm for the problem of maxmin fair allocation of indivisible goods. An instance of this problem consists of a set of k people and m indivisible goods. Each person has a known linear utility function over the set of goods which might be different ..."
Abstract

Cited by 58 (2 self)
 Add to MetaCart
In this paper, we give the first approximation algorithm for the problem of maxmin fair allocation of indivisible goods. An instance of this problem consists of a set of k people and m indivisible goods. Each person has a known linear utility function over the set of goods which might be different from the others’. The goal is to distribute the goods among the people and maximize the minimum utility received by them. 1 The approximation ratio of our algorithm is Ω ( √ k log3). As a crucial part of our k algorithm, we design and analyze an iterative method for rounding a fractional matching on a tree which might be of independent interest. We also provide better bounds when we are allowed to exclude a small fraction of the people from the problem.
Maximizing Submodular Set Functions Subject to Multiple Linear Constraints
, 2009
"... The concept of submodularity plays a vital role in combinatorial optimization. In particular, many important optimization problems can be cast as submodular maximization problems, including maximum coverage, maximum facility location and max cut in directed/undirected graphs. In this paper we presen ..."
Abstract

Cited by 51 (1 self)
 Add to MetaCart
(Show Context)
The concept of submodularity plays a vital role in combinatorial optimization. In particular, many important optimization problems can be cast as submodular maximization problems, including maximum coverage, maximum facility location and max cut in directed/undirected graphs. In this paper we present the first known approximation algorithms for the problem of maximizing a nondecreasing submodular set function subject to multiple linear constraints. Given a ddimensional budget vector ¯ L, for some d ≥ 1, and an oracle for a nondecreasing submodular set function f over a universe U, where each element e ∈ U is associated with a ddimensional cost vector, we seek a subset of elements S ⊆ U whose total cost is at most ¯ L, such that f(S) is maximized. We develop a framework for maximizing submodular functions subject to d linear constraints that yields a (1 − ε)(1 − e−1)approximation to the optimum for any ε> 0, where d> 1 is some constant. Our study is motivated by a variant of the classical maximum coverage problem that we call maximum coverage with multiple packing constraints. We use our framework to obtain the same approximation ratio for this problem. To the best of our knowledge, this is the first time the theoretical bound of 1 − e−1 is (almost) matched for both of these problems.
On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP
 In Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer ScienceVolume 00
, 2008
"... In this paper we consider the following maximum budgeted allocation(MBA) problem: Given a set of m indivisible items and n agents; each agent i willing to pay bij on item j and with a maximum budget of Bi, the goal is to allocate items to agents to maximize revenue. The problem naturally arises as a ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
In this paper we consider the following maximum budgeted allocation(MBA) problem: Given a set of m indivisible items and n agents; each agent i willing to pay bij on item j and with a maximum budget of Bi, the goal is to allocate items to agents to maximize revenue. The problem naturally arises as auctioneer revenue maximization in budgetconstrained auctions and as winner determination problem in combinatorial auctions when utilities of agents are budgetedadditive. Our main results are: • We give a 3/4approximation algorithm for MBA improving upon the previous best of ≃ 0.632[AM04, FV06]. Our techniques are based on a natural LP relaxation of MBA and our factor is optimal in the sense that it matches the integrality gap of the LP. • We prove it is NPhard to approximate MBA to any factor better than 15/16, previously only NPhardness was known [SS06, LLN01]. Our result also implies NPhardness of approximating maximum submodular welfare with demand oracle to a factor better than 15/16, improving upon the best known hardness of 275/276[FV06]. • Our hardness techniques can be modified to prove that it is NPhard to approximate the Generalized Assignment Problem (GAP) to any factor better than 10/11. This improves upon the 422/423 hardness of [CK00, CC02]. We use iterative rounding on a natural LP relaxation of MBA to obtain the 3/4approximation. We also give a (3/4 − ɛ)factor algorithm based on the primaldual schema which runs in Õ(nm) time, for any constant ɛ> 0. 1
An efficient approximation for the generalized assignment problem
 Information Processing Letters
, 2006
"... We present a simple family of algorithms for solving the Generalized Assignment Problem (GAP). Our technique is based on a novel combinatorial translation of any algorithm for the knapsack problem into an approximation algorithm for GAP. If the approximation ratio of the knapsack algorithm is α and ..."
Abstract

Cited by 33 (6 self)
 Add to MetaCart
(Show Context)
We present a simple family of algorithms for solving the Generalized Assignment Problem (GAP). Our technique is based on a novel combinatorial translation of any algorithm for the knapsack problem into an approximation algorithm for GAP. If the approximation ratio of the knapsack algorithm is α and its running time is O(f(N)), our algorithm guarantees a (1 + α) approximation ratio, and it runs in O(M · f(N) + M · N), where N is the number of items and M is the number of bins. Not only does our technique comprise a general interesting framework for the GAP problem; it also matches the best combinatorial approximation for this problem, with a much simpler algorithm and a better running time.
Scheduling algorithms for multicarrier wireless data systems
 IEEE/ACM Trans. Networking
, 2011
"... ..."