Results 1  10
of
257
Spectral hashing
, 2009
"... Semantic hashing [1] seeks compact binary codes of datapoints so that the Hamming distance between codewords correlates with semantic similarity. In this paper, we show that the problem of finding a best code for a given dataset is closely related to the problem of graph partitioning and can be sho ..."
Abstract

Cited by 285 (4 self)
 Add to MetaCart
(Show Context)
Semantic hashing [1] seeks compact binary codes of datapoints so that the Hamming distance between codewords correlates with semantic similarity. In this paper, we show that the problem of finding a best code for a given dataset is closely related to the problem of graph partitioning and can be shown to be NP hard. By relaxing the original problem, we obtain a spectral method whose solutions are simply a subset of thresholded eigenvectors of the graph Laplacian. By utilizing recent results on convergence of graph Laplacian eigenvectors to the LaplaceBeltrami eigenfunctions of manifolds, we show how to efficiently calculate the code of a novel datapoint. Taken together, both learning the code and applying it to a novel point are extremely simple. Our experiments show that our codes outperform the stateofthe art.
FINDING STRUCTURE WITH RANDOMNESS: PROBABILISTIC ALGORITHMS FOR CONSTRUCTING APPROXIMATE MATRIX DECOMPOSITIONS
"... Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for ..."
Abstract

Cited by 252 (6 self)
 Add to MetaCart
(Show Context)
Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing lowrank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired lowrank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition
Diffusion maps and coarsegraining: A unified framework for dimensionality reduction, graph partitioning and data set parameterization
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2006
"... We provide evidence that nonlinear dimensionality reduction, clustering and data set parameterization can be solved within one and the same framework. The main idea is to define a system of coordinates with an explicit metric that reflects the connectivity of a given data set and that is robust to ..."
Abstract

Cited by 157 (5 self)
 Add to MetaCart
(Show Context)
We provide evidence that nonlinear dimensionality reduction, clustering and data set parameterization can be solved within one and the same framework. The main idea is to define a system of coordinates with an explicit metric that reflects the connectivity of a given data set and that is robust to noise. Our construction, which is based on a Markov random walk on the data, offers a general scheme of simultaneously reorganizing and subsampling graphs and arbitrarily shaped data sets in high dimensions using intrinsic geometry. We show that clustering in embedding spaces is equivalent to compressing operators. The objective of data partitioning and clustering is to coarsegrain the random walk on the data while at the same time preserving a diffusion operator for the intrinsic geometry or connectivity of the data set up to some accuracy. We show that the quantization distortion in diffusion space bounds the error of compression of the operator, thus giving a rigorous justification for kmeans clustering in diffusion space and a precise measure of the performance of general clustering algorithms.
Towards a Theoretical Foundation for LaplacianBased Manifold Methods
, 2007
"... In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifoldmotivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and p ..."
Abstract

Cited by 156 (12 self)
 Add to MetaCart
(Show Context)
In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifoldmotivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacianbased manifold methods. These methods utilize the graph Laplacian associated to a data set for a variety of applications in semisupervised learning, clustering, data representation. We show that under certain conditions the graph Laplacian of a point cloud of data samples converges to the LaplaceBeltrami operator on the underlying manifold. Theorem 3.1 contains the first result showing convergence of a random graph Laplacian to the manifold Laplacian in the context of machine learning.
Diffusion Wavelets
, 2004
"... We present a multiresolution construction for efficiently computing, compressing and applying large powers of operators that have high powers with low numerical rank. This allows the fast computation of functions of the operator, notably the associated Green’s function, in compressed form, and their ..."
Abstract

Cited by 148 (16 self)
 Add to MetaCart
We present a multiresolution construction for efficiently computing, compressing and applying large powers of operators that have high powers with low numerical rank. This allows the fast computation of functions of the operator, notably the associated Green’s function, in compressed form, and their fast application. Classes of operators satisfying these conditions include diffusionlike operators, in any dimension, on manifolds, graphs, and in nonhomogeneous media. In this case our construction can be viewed as a farreaching generalization of Fast Multipole Methods, achieved through a different point of view, and of the nonstandard wavelet representation of CalderónZygmund and pseudodifferential operators, achieved through a different multiresolution analysis adapted to the operator. We show how the dyadic powers of an operator can be used to induce a multiresolution analysis, as in classical LittlewoodPaley and wavelet theory, and we show how to construct, with fast and stable algorithms, scaling function and wavelet bases associated to this multiresolution analysis, and the corresponding downsampling operators, and use them to compress the corresponding powers of the operator. This allows to extend multiscale signal processing to general spaces (such as manifolds and graphs) in a very natural way, with corresponding fast algorithms.
Laplacebeltrami eigenfunctions for deformation invariant shape representation,” in
 Proc. EG SGP,
, 2007
"... ..."
Diffusion maps, spectral clustering and eigenfunctions of fokkerplanck operators
 in Advances in Neural Information Processing Systems 18
, 2005
"... This paper presents a diffusion based probabilistic interpretation of spectral clustering and dimensionality reduction algorithms that use the eigenvectors of the normalized graph Laplacian. Given the pairwise adjacency matrix of all points, we define a diffusion distance between any two data points ..."
Abstract

Cited by 110 (14 self)
 Add to MetaCart
(Show Context)
This paper presents a diffusion based probabilistic interpretation of spectral clustering and dimensionality reduction algorithms that use the eigenvectors of the normalized graph Laplacian. Given the pairwise adjacency matrix of all points, we define a diffusion distance between any two data points and show that the low dimensional representation of the data by the first few eigenvectors of the corresponding Markov matrix is optimal under a certain mean squared error criterion. Furthermore, assuming that data points are random samples from a density p(x) = e −U(x) we identify these eigenvectors as discrete approximations of eigenfunctions of a FokkerPlanck operator in a potential 2U(x) with reflecting boundary conditions. Finally, applying known results regarding the eigenvalues and eigenfunctions of the continuous FokkerPlanck operator, we provide a mathematical justification for the success of spectral clustering and dimensional reduction algorithms based on these first few eigenvectors. This analysis elucidates, in terms of the characteristics of diffusion processes, many empirical findings regarding spectral clustering algorithms.
SPECTRAL CLUSTERING AND THE HIGHDIMENSIONAL STOCHASTIC BLOCKMODEL
 SUBMITTED TO THE ANNALS OF STATISTICS
"... Networks or graphs can easily represent a diverse set of data sources that are characterized by interacting units or actors. Social networks, representing people who communicate with each other, are one example. Communities or clusters of highly connected actors form an essential feature in the stru ..."
Abstract

Cited by 105 (7 self)
 Add to MetaCart
Networks or graphs can easily represent a diverse set of data sources that are characterized by interacting units or actors. Social networks, representing people who communicate with each other, are one example. Communities or clusters of highly connected actors form an essential feature in the structure of several empirical networks. Spectral clustering is a popular and computationally feasible method to discover these communities. The Stochastic Blockmodel (Holland, Laskey and Leinhardt, 1983) is a social network model with well defined communities; each node is a member of one community. For a network generated from the Stochastic Blockmodel, we bound the number of nodes “misclustered” by spectral clustering. The asymptotic results in this paper are the first clustering results that allow the number of clusters in the model to grow with the number of nodes, hence the name highdimensional. In order to study spectral clustering under the Stochastic Blockmodel, we first show that under the more general latent space model, the eigenvectors of the normalized graph Laplacian asymptotically converge to the eigenvectors of a “population” normalized graph Laplacian. Aside from the implication for spectral clustering, this provides insight into a graph visualization technique. Our method of studying the eigenvectors of random matrices is original.
Protovalue functions: A laplacian framework for learning representation and control in markov decision processes
 Journal of Machine Learning Research
, 2006
"... This paper introduces a novel spectral framework for solving Markov decision processes (MDPs) by jointly learning representations and optimal policies. The major components of the framework described in this paper include: (i) A general scheme for constructing representations or basis functions by d ..."
Abstract

Cited by 92 (10 self)
 Add to MetaCart
(Show Context)
This paper introduces a novel spectral framework for solving Markov decision processes (MDPs) by jointly learning representations and optimal policies. The major components of the framework described in this paper include: (i) A general scheme for constructing representations or basis functions by diagonalizing symmetric diffusion operators (ii) A specific instantiation of this approach where global basis functions called protovalue functions (PVFs) are formed using the eigenvectors of the graph Laplacian on an undirected graph formed from state transitions induced by the MDP (iii) A threephased procedure called representation policy iteration comprising of a sample collection phase, a representation learning phase that constructs basis functions from samples, and a final parameter estimation phase that determines an (approximately) optimal policy within the (linear) subspace spanned by the (current) basis functions. (iv) A specific instantiation of the RPI framework using leastsquares policy iteration (LSPI) as the parameter estimation method (v) Several strategies for scaling the proposed approach to large discrete and continuous state spaces, including the Nyström extension for outofsample interpolation of eigenfunctions, and the use of Kronecker sum factorization to construct compact eigenfunctions in product spaces such as factored MDPs (vi) Finally, a series of illustrative discrete and continuous control tasks, which both illustrate the concepts and provide a benchmark for evaluating the proposed approach. Many challenges remain to be addressed in scaling the proposed framework to large MDPs, and several elaboration of the proposed framework are briefly summarized at the end.
Diffusion Maps, Spectral Clustering and Reaction
 Applied and Computational Harmonic Analysis: Special issue on Diffusion Maps and Wavelets
, 2006
"... A central problem in data analysis is the low dimensional representation of high dimensional data, and the concise description of its underlying geometry and density. In the analysis of large scale simulations of complex dynamical systems, where the notion of time evolution comes into play, importan ..."
Abstract

Cited by 90 (14 self)
 Add to MetaCart
A central problem in data analysis is the low dimensional representation of high dimensional data, and the concise description of its underlying geometry and density. In the analysis of large scale simulations of complex dynamical systems, where the notion of time evolution comes into play, important problems are the identification of slow variables and dynamically meaningful reaction coordinates that capture the long time evolution of the system. In this paper we provide a unifying view of these apparently different tasks, by considering a family of di#usion maps, defined as the embedding of complex (high dimensional) data onto a low dimensional Euclidian space, via the eigenvectors of suitably defined random walks defined on the given datasets. Assuming that the data is randomly sampled from an underlying general probability distribution p(x) = e U(x) , we show that as the number of samples goes to infinity, the eigenvectors of each di#usion map converge to the eigenfunctions of a corresponding di#erential operator defined on the support of the probability distribution. Di#erent normalizations of the Markov chain on the graph lead to di#erent limiting di#erential operators.