Results 1  10
of
26
Towards Tractable Algebras for Bags
, 1993
"... Bags, i.e. sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in ..."
Abstract

Cited by 56 (5 self)
 Add to MetaCart
Bags, i.e. sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in the language extends its expressive power, and increases its complexity. We consider two main issues, namely (i) the impact of the depth of bag nesting on the expressive power, and (ii) the complexity and the expressive power induced by the algebraic operations. We show that the bag algebra is more expressive than the nested relation algebra (at all levels of nesting), and that the difference may be subtle. We establish a hierarchy based on the structure of algebra expressions. This hierarchy is shown to be highly related to the properties of the powerset operator. Invited to a special issue of the Journal of Computer and System Sciences selected from ACM Princ. of Database Systems,...
The Power of Languages for the Manipulation of Complex Values
 VLDB Journal
, 1995
"... Abstract. Various models and languages for describing and manipulating hierarchically structured data have been proposed. Algebraic, calculusbased, and logicprogramming oriented languages have all been considered. This article presents a general model for complex values (i.e., values with hierarc ..."
Abstract

Cited by 50 (1 self)
 Add to MetaCart
(Show Context)
Abstract. Various models and languages for describing and manipulating hierarchically structured data have been proposed. Algebraic, calculusbased, and logicprogramming oriented languages have all been considered. This article presents a general model for complex values (i.e., values with hierarchical structures), and languages for it based on the three paradigms. The algebraic language generalizes those presented in the literature; it is shown to be related to the functional style of programming advocated by Backus (1978). The notion of domain independence (from relational databases) is defined, and syntactic restrictions (referred to as safety conditions) on calculus queries are formulated to guarantee domain independence. The main results are: The domainindependent calculus, the safe calculus, the algebra, and the logicprogramming oriented language have equivalent expressive power. In particular, recursive queries, such as the transitive closure, can be expressed in each of the languages. For this result, the algebra needs the powerset operation. A more restricted version of safety is presented, such that the restricted safe calculus is equivalent to the algebra without the powerset. The results are extended to the case where arbitrary functions and predicates are used in the languages. Key Words. Database, query language, complex value, complex object, database model.
On the Complexity of Nonrecursive XQuery and Functional Query Languages on Complex Values
 In Proc. PODS’05
"... This article studies the complexity of evaluating functional query languages for complex values such as monad algebra and the recursionfree fragment of XQuery. We show that monad algebra with equality restricted to atomic values is complete for the class TA[2O(n) , O(n)] of problems solvable in lin ..."
Abstract

Cited by 47 (2 self)
 Add to MetaCart
(Show Context)
This article studies the complexity of evaluating functional query languages for complex values such as monad algebra and the recursionfree fragment of XQuery. We show that monad algebra with equality restricted to atomic values is complete for the class TA[2O(n) , O(n)] of problems solvable in linear exponential time with a linear number of alternations. The monotone fragment of monad algebra with atomic value equality but without negation is complete for nondeterministic exponential time. For monad algebra with deep equality, we establish TA[2O(n) , O(n)] lower and exponentialspace upper bounds. We also study a fragment of XQuery, Core XQuery, that seems to incorporate all the features of a query language on complex values that are traditionally deemed essential. A close connection between monad algebra on lists and Core XQuery (with “child ” as the only axis) is exhibited, and it is shown that these languages are expressively equivalent up to representation issues. We show that Core XQuery is just as hard as monad algebra w.r.t. query and combined complexity, and that it is in TC0 if the query is assumed fixed. As Core XQuery is NEXPTIMEhard, it is commonly believed that any algorithm for evaluating Core XQuery has to require exponential amounts of working memory and doubly exponential time in the worst case. We present a property of queries – the lack of a certain form of composition – that virtually all realworld XQueries have and that allows for query evaluation in singly exponential time and polynomial space. Still, we are able to show for an important special case – Core XQuery with equality testing restricted to atomic values – that the compositionfree language is just as expressive as the language with composition. Thus, under widelyheld complexitytheoretic assumptions, the compositionfree language is an exponentially less succinct version of the language with composition.
Bounded Fixpoints for Complex Objects
, 1997
"... We study a query language for complexobject databases, which is designed to (1) express only tractable queries, and (2) be as expressive over flat relations as firstorder logic with fixpoints. The language is obtained by extending the nested relational algebra, NRA, with a "bounded fixpoint&q ..."
Abstract

Cited by 34 (9 self)
 Add to MetaCart
We study a query language for complexobject databases, which is designed to (1) express only tractable queries, and (2) be as expressive over flat relations as firstorder logic with fixpoints. The language is obtained by extending the nested relational algebra, NRA, with a "bounded fixpoint" operator. Similar to results for flat relations, all tractable queries over ordered databases are expressible in this language. The main result consists in proving that this language is a conservative extension of the firstorder logic with fixpoints, or of the whilequeries (depending on the interpretation of the bounded fixpoint: inflationary or partial). That is, a query from flat relations to flat relations is expressible in our language if and only if it is expressible in firstorder logic with fixpoints, or in the whilequeries respectively. The proof technique for this theorem uses indexes to encode complex objects into flat relations. It can serve as basis for an implementation method of ...
An Algebra for Pomsets
, 1995
"... We study languages for manipulating partially ordered structures with duplicates (e.g. trees, lists). As a general framework, we consider the pomset (partially ordered multiset) data type. We introduce an algebra for pomsets, which generalizes traditional algebras for (nested) sets, bags and list ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
We study languages for manipulating partially ordered structures with duplicates (e.g. trees, lists). As a general framework, we consider the pomset (partially ordered multiset) data type. We introduce an algebra for pomsets, which generalizes traditional algebras for (nested) sets, bags and lists. This paper is motivated by the study of the impact of different language primitives on the expressive power. We show that the use of partially ordered types increases the expressive power significantly. Surprisingly, it turns out that the algebra when restricted to both unordered (bags) and totally ordered (lists) intermediate types, yields the same expressive power as fixpoint logic with counting on relational databases. It therefore constitutes a rather robust class of relational queries. On the other hand, we obtain a characterization of PTIME queries on lists by considering only totally ordered types.
A Query Language for NC
 In Proceedings of 13th ACM Symposium on Principles of Database Systems
, 1994
"... We show that a form of divide and conquer recursion on sets together with the relational algebra expresses exactly the queries over ordered relational databases which are NC computable. At a finer level, we relate k nested uses of recursion exactly to AC k , k 1. We also give corresponding resul ..."
Abstract

Cited by 20 (11 self)
 Add to MetaCart
(Show Context)
We show that a form of divide and conquer recursion on sets together with the relational algebra expresses exactly the queries over ordered relational databases which are NC computable. At a finer level, we relate k nested uses of recursion exactly to AC k , k 1. We also give corresponding results for complex objects. 1 Introduction NC is the complexity class of functions that are computable in polylogarithmic time with polynomially many processors on a parallel random access machine (PRAM). The query language for NC discussed here is centered around a form of divide and conquer recursion (dcr ) on finite sets which has obvious potential for parallel evaluation and can easily express, for example, transitive closure and parity. Divide and conquer with parameters e; f; u defines the unique function ', notation dcr (e; f; u), taking finite sets as arguments, such that: '(;) def = e '(fyg) def = f(y) '(s 1 [ s 2 ) def = u('(s 1 ); '(s 2 )) when s 1 " s 2 = ; For parity, we t...
Foundations of rulebased query answering
 IN REASONING WEB, INT. SUMMER SCHOOL, LNCS
, 2007
"... This survey article introduces into the essential concepts and methods underlying rulebased query languages. It covers four complementary areas: declarative semantics based on adaptations of mathematical logic, operational semantics, complexity and expressive power, and optimisation of query evalua ..."
Abstract

Cited by 19 (10 self)
 Add to MetaCart
(Show Context)
This survey article introduces into the essential concepts and methods underlying rulebased query languages. It covers four complementary areas: declarative semantics based on adaptations of mathematical logic, operational semantics, complexity and expressive power, and optimisation of query evaluation. The treatment of these areas is foundationoriented, the foundations having resulted from over four decades of research in the logic programming and database communities on combinations of query languages and rules. These results have later formed the basis for conceiving, improving, and implementing several Web and Semantic Web technologies, in particular query languages such as XQuery or SPARQL for querying relational, XML, and RDF data, and rule languages like the “Rule Interchange Framework (RIF) ” currently being developed in a working group of the W3C. Coverage of the article is deliberately limited to declarative languages in a classical setting: issues such as query answering in FLogic or in description logics, or the relationship of query answering to reactive rules and events, are not addressed.
In Search of the Lost Schema
 PROC. OF THE 7TH INTERNATIONAL CONFERENCE ON DATABASE THEORY
, 1999
"... We study the problem of rediscovering the schema of nested relations that have been encoded as strings for storage purposes. We consider various classes of encoding functions, and consider the markup encodings, which allow to find the schema without knowledge of the encoding function, under rea ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
We study the problem of rediscovering the schema of nested relations that have been encoded as strings for storage purposes. We consider various classes of encoding functions, and consider the markup encodings, which allow to find the schema without knowledge of the encoding function, under reasonable assumptions on the input data. Depending upon the encoding of empty sets, we propose two polynomial online algorithms (with different buffer size) solving the schema finding problem. We also prove that with a high probability, both algorithms find the schema after examining a fixed number of tuples, thus leading in practice to a linear time behavior with respect to the database size for wrapping the data. Finally, we show that the proposed techniques are wellsuited for practical applications, such as structuring and wrapping HTML pages and Web sites.
On the expressive power of simply typed and letpolymorphic lambda calculi
 11th Annual IEEE Symp. on Logic in Computer Science (LICS'96)
, 1996
"... We present a functional framework for descriptive computational complexity, in which the Regular, Firstorder, Ptime, Pspace, kExptime, kExpspace (k 1), and Elementary sets have syntactic characterizations. In this framework, typed lambda terms represent inputs and outputs as well as programs. The ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
We present a functional framework for descriptive computational complexity, in which the Regular, Firstorder, Ptime, Pspace, kExptime, kExpspace (k 1), and Elementary sets have syntactic characterizations. In this framework, typed lambda terms represent inputs and outputs as well as programs. The lambda calculi describing the above computational complexity classes are simply or letpolymorphically typed with functionalities of fixed order. They consist of: order 0 atomic constants, order 1 equality among these constants, variables, application, and abstraction. Increasing functionality order by one for these languages corresponds to increasing the computational complexity by one alternation. This exact correspondence is established using a semantic evaluation of languages for each fixed order, which is the primary technical contribution of this paper.
Databases and FiniteModel Theory
 IN DESCRIPTIVE COMPLEXITY AND FINITE MODELS
, 1997
"... Databases provide one of the main concrete scenarios for finitemodel theory within computer science. This paper presents an informal overview of database theory aimed at finitemodel theorists, emphasizing the specificity of the database area. It is argued that the area of databases is a rich sourc ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Databases provide one of the main concrete scenarios for finitemodel theory within computer science. This paper presents an informal overview of database theory aimed at finitemodel theorists, emphasizing the specificity of the database area. It is argued that the area of databases is a rich source of questions and vitality for finitemodel theory.