Results 1 - 10
of
596
Kernel-Based Object Tracking
, 2003
"... A new approach toward target representation and localization, the central component in visual tracking of non-rigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity fu ..."
Abstract
-
Cited by 900 (4 self)
- Add to MetaCart
(Show Context)
A new approach toward target representation and localization, the central component in visual tracking of non-rigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking. Keywords: non-rigid object tracking; target localization and representation; spatially-smooth similarity function; Bhattacharyya coefficient; face tracking. 1
Object Tracking: A Survey
, 2006
"... The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns o ..."
Abstract
-
Cited by 701 (7 self)
- Add to MetaCart
The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Unscented Filtering and Nonlinear Estimation
- PROCEEDINGS OF THE IEEE
, 2004
"... The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the ..."
Abstract
-
Cited by 566 (5 self)
- Add to MetaCart
The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the time scale of the updates. Many of these difficulties arise from its use of linearization. To overcome this limitation, the unscented transformation (UT) was developed as a method to propagate mean and covariance information through nonlinear transformations. It is more accurate, easier to implement, and uses the same order of calculations as linearization. This paper reviews the motivation, development, use, and implications of the UT.
On-line selection of discriminative tracking features
, 2003
"... This paper presents an on-line feature selection mechanism for evaluating multiple features while tracking and adjusting the set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and background are also best for track-ing the ..."
Abstract
-
Cited by 356 (5 self)
- Add to MetaCart
(Show Context)
This paper presents an on-line feature selection mechanism for evaluating multiple features while tracking and adjusting the set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and background are also best for track-ing the object. Given a set of seed features, we compute log likelihood ratios of class conditional sample densities from object and background to form a new set of candidate features tailored to the local object/background discrimination task. The two-class variance ratio is used to rank these new features according to how well they separate sample distributions of object and background pixels. This feature evaluation mechanism is embedded in a mean-shift tracking system that adap-tively selects the top-ranked discriminative features for tracking. Examples are presented that demonstrate how this method adapts to changing appearances of both tracked object and scene background. We note susceptibility of the variance ratio feature selection method to distraction by spatially correlated background clutter, and develop an additional approach that seeks to minimize the likelihood of distraction.
MCMC-based particle filtering for tracking a variable number of interacting targets
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2005
"... We describe a particle filter that effectively deals with interacting targets- targets that are influenced by the proximity and/or behavior of other targets. The particle filter includes a Markov random field (MRF) motion prior that helps maintain the identity of targets throughout an interaction, s ..."
Abstract
-
Cited by 206 (6 self)
- Add to MetaCart
(Show Context)
We describe a particle filter that effectively deals with interacting targets- targets that are influenced by the proximity and/or behavior of other targets. The particle filter includes a Markov random field (MRF) motion prior that helps maintain the identity of targets throughout an interaction, significantly reducing tracker failures. We show that this MRF prior can be easily implemented by including an additional interaction factor in the importance weights of the particle filter. However, the computational requirements of the resulting multi-target filter render it unusable for large numbers of targets. Conse-quently, we replace the traditional importance sampling step in the particle filter with a novel Markov chain Monte Carlo (MCMC) sampling step to obtain a more efficient MCMC-based multi-target filter. We also show how to extend this MCMC-based filter to address a variable number of interacting targets. Finally, we present both qualitative and quantitative experimental results, demonstrating that the resulting particle filters deal efficiently and effectively with complicated target interactions.
Blog: Probabilistic models with unknown objects
- In IJCAI
, 2005
"... This paper introduces and illustrates BLOG, a formal language for defining probability models over worlds with unknown objects and identity uncertainty. BLOG unifies and extends several existing approaches. Subject to certain acyclicity constraints, every BLOG model specifies a unique probability di ..."
Abstract
-
Cited by 185 (10 self)
- Add to MetaCart
(Show Context)
This paper introduces and illustrates BLOG, a formal language for defining probability models over worlds with unknown objects and identity uncertainty. BLOG unifies and extends several existing approaches. Subject to certain acyclicity constraints, every BLOG model specifies a unique probability distribution over first-order model structures that can contain varying and unbounded numbers of objects. Furthermore, complete inference algorithms exist for a large fragment of the language. We also introduce a probabilistic form of Skolemization for handling evidence. 1
Theory of Mind for a Humanoid Robot
- AUTONOMOUS ROBOTS
, 2002
"... If we are to build human-like robots that can interact naturally with people, our robots must know not only about the properties of objects but also the properties of animate agents in the world. One of the fundamental social skills for humans is the attribution of beliefs, goals, and desires to o ..."
Abstract
-
Cited by 152 (4 self)
- Add to MetaCart
(Show Context)
If we are to build human-like robots that can interact naturally with people, our robots must know not only about the properties of objects but also the properties of animate agents in the world. One of the fundamental social skills for humans is the attribution of beliefs, goals, and desires to other people. This set of skills has often been called a “theory of mind.” This paper presents the theories of Leslie (1994) and Baron-Cohen (1995) on the development of theory of mind in human children and discusses the potential application of both of these theories to building robots with similar capabilities. Initial implementation details and basic skills (such as finding faces and eyes and distinguishing animate from inanimate stimuli) are introduced. I further speculate on the usefulness of a robotic implementation in evaluating and comparing these two models.
An MCMC-based Particle Filter For Tracking Multiple Interacting Targets
- in Proc. ECCV
, 2003
"... We describe a Markov chain Monte Carlo based particle filter that effectively deals with interacting targets, i.e., targets that are influenced by the proximity and/or behavior of other targets. Such interactions cause problems for traditional approaches to the data association problem. In respon ..."
Abstract
-
Cited by 152 (6 self)
- Add to MetaCart
(Show Context)
We describe a Markov chain Monte Carlo based particle filter that effectively deals with interacting targets, i.e., targets that are influenced by the proximity and/or behavior of other targets. Such interactions cause problems for traditional approaches to the data association problem. In response, we developed a joint tracker that includes a more sophisticated motion model to maintain the identity of targets throughout an interaction, drastically reducing tracker failures. The paper presents two main contributions: (1) we show how a Markov random field (MRF) motion prior, built on the fly at each time step, can substantially improve tracking when targets interact, and (2) we show how this can be done efficiently using Markov chain Monte Carlo (MCMC) sampling. We prove that incorporating an MRF to model interactions is equivalent to adding an additional interaction factor to the importance weights in a joint particle filter. Since a joint particle filter suffers from exponential complexity in the number of tracked targets, we replace the traditional importance sampling step in the particle filter with an MCMC sampling step. The resulting filter deals efficiently and effectively with complicated interactions when targets approach each other. We present both qualitative and quantitative results to substantiate the claims made in the paper, including a large scale experiment on a video-sequence of over 10,000 frames in length.
Markov Chain Monte Carlo Data Association for Multi-Target Tracking Univ
, 2008
"... data association (MCMCDA) for solving data association prob-lems arising in multi-target tracking in a cluttered environment. When the number of targets is fixed, the single-scan version of MCMCDA approximates joint probabilistic data association (JPDA). Although the exact computation of association ..."
Abstract
-
Cited by 151 (25 self)
- Add to MetaCart
(Show Context)
data association (MCMCDA) for solving data association prob-lems arising in multi-target tracking in a cluttered environment. When the number of targets is fixed, the single-scan version of MCMCDA approximates joint probabilistic data association (JPDA). Although the exact computation of association probabili-ties in JPDA is NP-hard, we prove that the single-scan MCMCDA algorithm provides a fully polynomial randomized approximation scheme for JPDA. For general multi-target tracking problems, in which unknown numbers of targets appear and disappear at random times, we present a multi-scan MCMCDA algorithm that approximates the optimal Bayesian filter. We also present exten-sive simulation studies supporting theoretical results in this paper. Our simulation results also show that MCMCDA outperforms multiple hypothesis tracking (MHT) by a significant margin in terms of accuracy and efficiency under extreme conditions, such as a large number of targets in a dense environment, low detection probabilities, and high false alarm rates. Index Terms—Joint probabilistic data association (JPDA), Markov chain Monte Carlo data association (MCMCDA), mul-tiple hypothesis tracking (MHT). I.
Global data association for multi-object tracking using network flows
- In CVPR
, 2008
"... We propose a network flow based optimization method for data association needed for multiple object tracking. The maximum-a-posteriori (MAP) data association problem is mapped into a cost-flow network with a non-overlap constraint on trajectories. The optimal data association is found by a min-cost ..."
Abstract
-
Cited by 145 (1 self)
- Add to MetaCart
We propose a network flow based optimization method for data association needed for multiple object tracking. The maximum-a-posteriori (MAP) data association problem is mapped into a cost-flow network with a non-overlap constraint on trajectories. The optimal data association is found by a min-cost flow algorithm in the network. The network is augmented to include an Explicit Occlusion Model(EOM) to track with long-term inter-object occlusions. A solution to the EOM-based network is found by an iterative approach built upon the original algorithm. Initialization and termination of trajectories and potential false observations are modeled by the formulation intrinsically. The method is efficient and does not require hypotheses pruning. Performance is compared with previous results on two public pedestrian datasets to show its improvement. 1.