Results 1  10
of
239
A calculus of mobile processes, I
, 1992
"... We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The ..."
Abstract

Cited by 1184 (31 self)
 Add to MetaCart
We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The calculus is an extension of the process algebra CCS, following work by Engberg and Nielsen, who added mobility to CCS while preserving its algebraic properties. The rrcalculus gains simplicity by removing all distinction between variables and constants; communication links are identified by names, and computation is represented purely as the communication of names across links. After an illustrated description of how the ncalculus generalises conventional process algebras in treating mobility, several examples exploiting mobility are given in some detail. The important examples are the encoding into the ncalculus of higherorder functions (the Icalculus and combinatory algebra), the transmission of processes as values, and the representation of data structures as processes. The paper continues by presenting the algebraic theory of strong bisimilarity and strong equivalence, including a new notion of equivalence indexed by distinctionsi.e., assumptions of inequality among names. These theories are based upon a semantics in terms of a labeled transition system and a notion of strong bisimulation, both of which are expounded in detail in a companion paper. We also report briefly on workinprogress based upon the corresponding notion of weak bisimulation, in which internal actions cannot be observed.
Modeling and simulation of genetic regulatory systems: A literature review
 JOURNAL OF COMPUTATIONAL BIOLOGY
, 2002
"... In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between ..."
Abstract

Cited by 738 (14 self)
 Add to MetaCart
(Show Context)
In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between DNA, RNA, proteins, and small molecules. As most genetic regulatory networks of interest involve many components connected through interlocking positive and negative feedback loops, an intuitive understanding of their dynamics is hard to obtain. As a consequence, formal methods and computer tools for the modeling and simulation of genetic regulatory networks will be indispensable. This paper reviews formalisms that have been employed in mathematical biology and bioinformatics to describe genetic regulatory systems, in particular directed graphs, Bayesian networks, Boolean networks and their generalizations, ordinary and partial differential equations, qualitative differential equations, stochastic equations, and rulebased formalisms. In addition, the paper discusses how these formalisms have been used in the simulation of the behavior of actual regulatory systems.
Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA
 Transactions on Computational Systems Biology
, 2004
"... Abstract. This paper examines the influence of the Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signalling pathway [5] through modelling in a Markovian process algebra, PEPA [11]. Two models of the system are presented, a reagentcentric view and a pathwayce ..."
Abstract

Cited by 122 (36 self)
 Add to MetaCart
(Show Context)
Abstract. This paper examines the influence of the Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signalling pathway [5] through modelling in a Markovian process algebra, PEPA [11]. Two models of the system are presented, a reagentcentric view and a pathwaycentric view. The models capture functionality at the level of subpathway, rather than at a molecular level. Each model affords a different perspective of the pathway and analysis. We demonstrate the two models to be formally equivalent using the timingaware bisimulation defined over PEPA models and discuss the biological significance. 1
Rulebased Modelling of Cellular Signalling
 PROCEEDINGS OF THE 18 TH INTERNATIONAL CONFERENCE ON CONCURRENCY THEORY (CONCUR’07), LECTURE NOTES IN COMPUTER SCIENCE
, 2007
"... Modelling is becoming a necessity in studying biological signalling pathways, because the combinatorial complexity of such systems rapidly overwhelms intuitive and qualitative forms of reasoning. Yet, this same combinatorial explosion makes the traditional modelling paradigm based on systems of di ..."
Abstract

Cited by 104 (22 self)
 Add to MetaCart
Modelling is becoming a necessity in studying biological signalling pathways, because the combinatorial complexity of such systems rapidly overwhelms intuitive and qualitative forms of reasoning. Yet, this same combinatorial explosion makes the traditional modelling paradigm based on systems of differential equations impractical. In contrast, agentbased or concurrent languages, such as κ [1–3] or the closely related BioNetGen language [4–10], describe biological interactions in terms of rules, thereby avoiding the combinatorial explosion besetting differential equations. Rules are expressed in an intuitive graphical form that transparently represents biological knowledge. In this way, rules become a natural unit of model building, modification, and discussion. We illustrate this with a sizeable example obtained from refactoring two models of EGF receptor signalling that are based on differential equations [11, 12]. An exciting aspect of the agentbased approach is that it naturally lends itself to the identification and analysis of the causal structures that deeply shape the dynamical, and perhaps even evolutionary, characteristics of complex distributed biological systems. In particular, one can adapt the notions of causality and conflict, familiar from concurrency theory, to κ, our representation language of choice. Using the EGF receptor model as an example, we show how causality enables the formalization of the colloquial concept of pathway and, perhaps more surprisingly, how conflict can be used to dissect the signalling dynamics to obtain a qualitative handle on the range of system behaviours. By taming the combinatorial explosion, and exposing the causal structures and key kinetic junctures in a model, agent and rulebased representations hold promise for making modelling more powerful, more perspicuous, and of appeal to a wider audience.
Probabilistic model checking of complex biological pathways
, 2006
"... Abstract. Probabilistic model checking is a formal verification technique that has been successfully applied to the analysis of systems from a broad range of domains, including security and communication protocols, distributed algorithms and power management. In this paper we illustrate its applicab ..."
Abstract

Cited by 94 (18 self)
 Add to MetaCart
(Show Context)
Abstract. Probabilistic model checking is a formal verification technique that has been successfully applied to the analysis of systems from a broad range of domains, including security and communication protocols, distributed algorithms and power management. In this paper we illustrate its applicability to a complex biological system: the FGF (Fibroblast Growth Factor) signalling pathway. We give a detailed description of how this case study can be modelled in the probabilistic model checker PRISM, discussing some of the issues that arise in doing so, and show how we can thus examine a rich selection of quantitative properties of this model. We present experimental results for the case study under several different scenarios and provide a detailed analysis, illustrating how this approach can be used to yield a better understanding of the dynamics of the pathway. 1
Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli
 Bioinformatics
, 2005
"... The functioning and development of living organisms is controlled by large and complex networks of genes, proteins, small molecules, and their mutual interactions, socalled genetic regulatory networks. In order to gain an understanding of how the behavior of an organism – e.g., the response of a ..."
Abstract

Cited by 85 (18 self)
 Add to MetaCart
(Show Context)
The functioning and development of living organisms is controlled by large and complex networks of genes, proteins, small molecules, and their mutual interactions, socalled genetic regulatory networks. In order to gain an understanding of how the behavior of an organism – e.g., the response of a
Pathway logic: Symbolic analysis of biological signaling
 In Proceedings of the Pacific Symposium on Biocomputing
, 2002
"... The genomic sequencing of hundreds of organisms including homo sapiens, and the exponential growth in gene expression and proteomic data for many species has revolutionized research in biology. However, the computational analysis of these burgeoning datasets has been hampered by the sparse successes ..."
Abstract

Cited by 68 (9 self)
 Add to MetaCart
The genomic sequencing of hundreds of organisms including homo sapiens, and the exponential growth in gene expression and proteomic data for many species has revolutionized research in biology. However, the computational analysis of these burgeoning datasets has been hampered by the sparse successes in combinations of data sources, representations, and algorithms. Here we propose the application of symbolic toolsets from the formal methods community to problems of biological interest, particularly signaling pathways, and more specifically mammalian mitogenic and stress responsive pathways. The results of formal symbolic analysis with extremely efficient representations of biological networks provide insights with potential biological impact. In particular, novel hypotheses may be generated which could lead to wet lab validation of new signaling possibilities. We demonstrate the graphic representation of the results of formal analysis of pathways, including navigational abilities, and describe the logical underpinnings of the approach. In summary, we propose and provide an initial description of an algebra and logic of signaling pathways and biologically plausible abstractions that provide the foundation for the application of highpowered tools such as model checkers to problems of biological interest. 1
Symbolic model checking of biochemical networks
 Computational Methods in Systems Biology (CMSB’03), volume 2602 of LNCS
, 2003
"... Abstract. Model checking is an automatic method for deciding if a circuit or a program, expressed as a concurrent transition system, satisfies a set of properties expressed in a temporal logic such as CTL. In this paper we argue that symbolic model checking is feasible in systems biology and that it ..."
Abstract

Cited by 66 (8 self)
 Add to MetaCart
Abstract. Model checking is an automatic method for deciding if a circuit or a program, expressed as a concurrent transition system, satisfies a set of properties expressed in a temporal logic such as CTL. In this paper we argue that symbolic model checking is feasible in systems biology and that it shows some advantages over simulation for querying and validating formal models of biological processes. We report our experiments on using the symbolic model checker NuSMV and the constraintbased model checker DMC, for the modeling and querying of two biological processes: a qualitative model of the mammalian cell cycle control after Kohn's diagrams, and a quantitative model of gene expression regulation. 1 Introduction In recent years, Biology has clearly engaged an elucidation work of highlevel biological processes in terms of their biochemical basis at the molecular level. The mass production of post genomic data, such as ARN expression, protein production and proteinprotein interaction, raises the need of a strong parallel effort on the formal representation of biological processes. Metabolism networks, extracellular and intracellular signaling pathways, and gene expression regulation networks, are very complex dynamical systems. Annotating data bases with qualitative and quantitative information about the dynamics of biological systems, will not be sufficient to integrate and efficiently use the current knowledge about these systems. The design of formal tools for modeling biomolecular processes and for reasoning about their dynamics seems to be a mandatory research path to which the field of formal verification in computer science may contribute a lot.
Bigraphs and Mobile Processes (revised)
, 2004
"... A bigraphical reactive system (BRS) involves bigraphs, in which the nesting of nodes represents locality, independently of the edges connecting them; it also allows bigraphs to reconfigure themselves. BRSs aim to provide a uniform way to model spatially distributed systems that both compute and comm ..."
Abstract

Cited by 66 (7 self)
 Add to MetaCart
A bigraphical reactive system (BRS) involves bigraphs, in which the nesting of nodes represents locality, independently of the edges connecting them; it also allows bigraphs to reconfigure themselves. BRSs aim to provide a uniform way to model spatially distributed systems that both compute and communicate. In this memorandum we develop their static and dynamic theory. In Part I we illustrate...