Results 1  10
of
155
Deterministic and Stochastic Models for Coalescence (Aggregation, Coagulation): a Review of the MeanField Theory for Probabilists
 Bernoulli
, 1997
"... Consider N particles, which merge into clusters according to the rule: a cluster of size x and a cluster of size y merge at (stochastic) rate K(x; y)=N , where K is a specified rate kernel. This MarcusLushnikov model of stochastic coalescence, and the underlying deterministic approximation given by ..."
Abstract

Cited by 227 (13 self)
 Add to MetaCart
(Show Context)
Consider N particles, which merge into clusters according to the rule: a cluster of size x and a cluster of size y merge at (stochastic) rate K(x; y)=N , where K is a specified rate kernel. This MarcusLushnikov model of stochastic coalescence, and the underlying deterministic approximation given by the Smoluchowski coagulation equations, have an extensive scientific literature. Some mathematical literature (Kingman's coalescent in population genetics; component sizes in random graphs) implicitly studies the special cases K(x; y) = 1 and K(x; y) = xy. We attempt a wideranging survey. General kernels are only now starting to be studied rigorously, so many interesting open problems appear. Keywords. branching process, coalescence, continuum tree, densitydependent Markov process, gelation, random graph, random tree, Smoluchowski coagulation equation Research supported by N.S.F. Grant DMS9622859 1 Introduction Models, implicitly or explicitly stochastic, of coalescence (= coagulati...
Random trees, Lévy processes and spatial branching processes
 Astérisque
"... 0.1 Discrete trees................................ 5 0.2 GaltonWatson trees............................ 7 0.3 The continuous height process....................... 9 0.4 From discrete to continuous trees..................... 12 ..."
Abstract

Cited by 116 (6 self)
 Add to MetaCart
(Show Context)
0.1 Discrete trees................................ 5 0.2 GaltonWatson trees............................ 7 0.3 The continuous height process....................... 9 0.4 From discrete to continuous trees..................... 12
Brownian Excursions, Critical Random Graphs and the Multiplicative Coalescent
, 1996
"... Let (B t (s); 0 s ! 1) be reflecting inhomogeneous Brownian motion with drift t \Gamma s at time s, started with B t (0) = 0. Consider the random graph G(n; n \Gamma1 +tn \Gamma4=3 ), whose largest components have size of order n 2=3 . Normalizing by n \Gamma2=3 , the asymptotic joint d ..."
Abstract

Cited by 110 (8 self)
 Add to MetaCart
Let (B t (s); 0 s ! 1) be reflecting inhomogeneous Brownian motion with drift t \Gamma s at time s, started with B t (0) = 0. Consider the random graph G(n; n \Gamma1 +tn \Gamma4=3 ), whose largest components have size of order n 2=3 . Normalizing by n \Gamma2=3 , the asymptotic joint distribution of component sizes is the same as the joint distribution of excursion lengths of B t (Corollary 2). The dynamics of merging of components as t increases are abstracted to define the multiplicative coalescent process. The states of this process are vectors x of nonnegative real cluster sizes (x i ), and clusters with sizes x i and x j merge at rate x i x j . The multiplicative coalescent is shown to be a Feller process on l 2 . The random graph limit specifies the standard multiplicative coalescent, which starts from infinitesimally small clusters at time \Gamma1: the existence of such a process is not obvious. AMS 1991 subject classifications. 60C05, 60J50, Key words and phras...
The continuum random tree. II. An overview
 In Stochastic Analysis
, 1990
"... Many different models of random trees have arisen in a variety of applied setting, and there is a large but scattered literature on exact and asymptotic results for particular models. For several years I have been interested in what kinds of "general theory " (as opposed to ad hoc analysis ..."
Abstract

Cited by 103 (13 self)
 Add to MetaCart
(Show Context)
Many different models of random trees have arisen in a variety of applied setting, and there is a large but scattered literature on exact and asymptotic results for particular models. For several years I have been interested in what kinds of "general theory " (as opposed to ad hoc analysis of particular
Probabilistic and fractal aspects of Lévy trees
 Probab. Th. Rel. Fields
, 2005
"... We investigate the random continuous trees called Lévy trees, which are obtained as scaling limits of discrete GaltonWatson trees. We give a mathematically precise definition of these random trees as random variables taking values in the set of equivalence classes of compact rooted Rtrees, which i ..."
Abstract

Cited by 92 (21 self)
 Add to MetaCart
We investigate the random continuous trees called Lévy trees, which are obtained as scaling limits of discrete GaltonWatson trees. We give a mathematically precise definition of these random trees as random variables taking values in the set of equivalence classes of compact rooted Rtrees, which is equipped with the GromovHausdorff distance. To construct Lévy trees, we make use of the coding by the height process which was studied in detail in previous work. We then investigate various probabilistic properties of Lévy trees. In particular we establish a branching property analogous to the wellknown property for GaltonWatson trees: Conditionally given the tree below level a, the subtrees originating from that level are distributed as the atoms of a Poisson point measure whose intensity involves a local time measure supported on the vertices at distance a from the root. We study regularity properties of local times in the space variable, and prove that the support of local time is the full level set, except for certain exceptional values of a corresponding to local extinctions. We also compute several fractal dimensions of Lévy trees, including Hausdorff and packing dimensions, in terms of lower and upper indices for the branching
The Standard Additive Coalescent
, 1997
"... Regard an element of the set \Delta := f(x 1 ; x 2 ; : : :) : x 1 x 2 : : : 0; X i x i = 1g as a fragmentation of unit mass into clusters of masses x i . The additive coalescent of Evans and Pitman (1997) is the \Deltavalued Markov process in which pairs of clusters of masses fx i ; x j g mer ..."
Abstract

Cited by 91 (23 self)
 Add to MetaCart
Regard an element of the set \Delta := f(x 1 ; x 2 ; : : :) : x 1 x 2 : : : 0; X i x i = 1g as a fragmentation of unit mass into clusters of masses x i . The additive coalescent of Evans and Pitman (1997) is the \Deltavalued Markov process in which pairs of clusters of masses fx i ; x j g merge into a cluster of mass x i +x j at rate x i +x j . They showed that a version (X 1 (t); \Gamma1 ! t ! 1) of this process arises as a n !1 weak limit of the process started at time \Gamma 1 2 log n with n clusters of mass 1=n. We show this standard additive coalescent may be constructed from the continuum random tree of Aldous (1991,1993) by Poisson splitting along the skeleton of the tree. We describe the distribution of X 1 (t) on \Delta at a fixed time t. We show that the size of the cluster containing a given atom, as a process in t, has a simple representation in terms of the stable subordinator of index 1=2. As t ! \Gamma1, we establish a Gaussian limit for (centered and norm...
Random trees and applications
, 2005
"... We discuss several connections between discrete and continuous ..."
Abstract

Cited by 78 (14 self)
 Add to MetaCart
(Show Context)
We discuss several connections between discrete and continuous
Rayleigh processes, real trees, and root growth with regrafting
, 2004
"... Abstract. The real trees form a class of metric spaces that extends the class of trees with edge lengths by allowing behavior such as infinite total edge length and vertices with infinite branching degree. Aldous’s Brownian continuum random tree, the random treelike object naturally associated with ..."
Abstract

Cited by 76 (14 self)
 Add to MetaCart
Abstract. The real trees form a class of metric spaces that extends the class of trees with edge lengths by allowing behavior such as infinite total edge length and vertices with infinite branching degree. Aldous’s Brownian continuum random tree, the random treelike object naturally associated with a standard Brownian excursion, may be thought of as a random compact real tree. The continuum random tree is a scaling limit as N → ∞ of both a critical GaltonWatson tree conditioned to have total population size N as well as a uniform random rooted combinatorial tree with N vertices. The Aldous–Broder algorithm is a Markov chain on the space of rooted combinatorial trees with N vertices that has the uniform tree as its stationary distribution. We construct and study a Markov process on the space of all rooted compact real trees that has the continuum random tree as its stationary distribution and arises as the scaling limit as N → ∞ of the Aldous–Broder chain. A key technical ingredient in this work is the use of a pointed Gromov–
The topological structure of scaling limits of large planar maps
 Invent. Math
"... We discuss scaling limits of large bipartite planar maps. If p ≥ 2 is a fixed integer, we consider, for every integer n ≥ 2, a random planar map Mn which is uniformly distributed over the set of all rooted 2pangulations with n faces. Then, at least along a suitable subsequence, the metric space con ..."
Abstract

Cited by 72 (13 self)
 Add to MetaCart
(Show Context)
We discuss scaling limits of large bipartite planar maps. If p ≥ 2 is a fixed integer, we consider, for every integer n ≥ 2, a random planar map Mn which is uniformly distributed over the set of all rooted 2pangulations with n faces. Then, at least along a suitable subsequence, the metric space consisting of the set of vertices of Mn, equipped with the graph distance rescaled by the factor n −1/4, converges in distribution as n → ∞ towards a limiting random compact metric space, in the sense of the GromovHausdorff distance. We prove that the topology of the limiting space is uniquely determined independently of p and of the subsequence, and that this space can be obtained as the quotient of the Continuum Random Tree for an equivalence relation which is defined from Brownian labels attached to the vertices. We also verify that the Hausdorff dimension of the limit is almost surely equal to 4. 1
Probability Distributions on Cladograms
 In Random Discrete Structures
, 1996
"... By analogy with the theory surrounding the Ewens sampling formula in neutral population genetics, we ask whether there exists a natural oneparameter family of probability distributions on cladograms ("evolutionary trees") which plays a central role in neutral evolutionary theory. Unfortuna ..."
Abstract

Cited by 66 (2 self)
 Add to MetaCart
(Show Context)
By analogy with the theory surrounding the Ewens sampling formula in neutral population genetics, we ask whether there exists a natural oneparameter family of probability distributions on cladograms ("evolutionary trees") which plays a central role in neutral evolutionary theory. Unfortunately the answer seems to be "no"  see Conjecture 2. But we can embed the two most popular models into an interesting family which we call "betasplitting" models. We briefly describe some mathematical results about this family, which exhibits qualitatively different behavior for different ranges of the parameter fi. 1 Probability distributions on partitions and neutral population genetics The first few sections give some conceptual background. The reader wishing to "get right to the point" should skim these and proceed to section 3. For each n there is a finite set of partitions of f1; 2; : : : ; ng into unordered families fA 1 ; A 2 ; : : : ; A k g of subsets. A oneparameter family (P (n) ` ) o...