Results 1  10
of
136
The impact of imperfect scheduling on crosslayer congestion control in wireless networks
, 2005
"... In this paper, we study crosslayer design for congestion control in multihop wireless networks. In previous work, we have developed an optimal crosslayer congestion control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the under ..."
Abstract

Cited by 349 (32 self)
 Add to MetaCart
In this paper, we study crosslayer design for congestion control in multihop wireless networks. In previous work, we have developed an optimal crosslayer congestion control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the underlying layers. However, the scheduling component in this optimal crosslayer congestion control scheme has to solve a complex global optimization problem at each time, and is hence too computationally expensive for online implementation. In this paper, we study how the performance of crosslayer congestion control will be impacted if the network can only use an imperfect (and potentially distributed) scheduling component that is easier to implement. We study both the case when the number of users in the system is fixed and the case with dynamic arrivals and departures of the users, and we establish performance bounds of crosslayer congestion control with imperfect scheduling. Compared with a layered approach that does not design congestion control and scheduling together, our crosslayer approach has provably better performance bounds, and substantially outperforms the layered approach. The insights drawn from our analyses also enable us to design a fully distributed crosslayer congestion control and scheduling algorithm for a restrictive interference model.
Fair Resource Allocation in Wireless Networks using Queuelengthbased Scheduling and Congestion Control
"... We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different receiver. The channel conditions may be timevarying and different for different receivers. It is wellknown that appropriate ..."
Abstract

Cited by 202 (45 self)
 Add to MetaCart
We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different receiver. The channel conditions may be timevarying and different for different receivers. It is wellknown that appropriately chosen queuelength based policies are throughputoptimal while other policies based on the estimation of channel statistics can be used to allocate resources fairly (such as proportional fairness) among competing users. In this paper, we show that a combination of queuelengthbased scheduling at the base station and congestion control implemented either at the base station or at the end users can lead to fair resource allocation and queuelength stability.
Joint congestion control, routing and MAC for stability and fairness in wireless networks
 IEEE Journal on Selected Areas in Communications
, 2006
"... In this work, we describe and analyze a joint scheduling, routing and congestion control mechanism for wireless networks, that asymptotically guarantees stability of the buffers and fair allocation of the network resources. The queue lengths serve as common information to different layers of the ne ..."
Abstract

Cited by 126 (23 self)
 Add to MetaCart
(Show Context)
In this work, we describe and analyze a joint scheduling, routing and congestion control mechanism for wireless networks, that asymptotically guarantees stability of the buffers and fair allocation of the network resources. The queue lengths serve as common information to different layers of the network protocol stack. Our main contribution is to prove the asymptotic optimality of a primaldual congestion controller, which is known to model different versions of TCP well.
Constanttime distributed scheduling policies for ad hoc wireless networks
 in Proceedings of IEEE Conference on Decision and Control
, 2006
"... Abstract — We propose two new distributed scheduling policies for ad hoc wireless networks that can achieve provable capacity regions. Known scheduling policies that guarantee comparable capacity regions are either centralized or need computation time that increases with the size of the network. In ..."
Abstract

Cited by 79 (7 self)
 Add to MetaCart
Abstract — We propose two new distributed scheduling policies for ad hoc wireless networks that can achieve provable capacity regions. Known scheduling policies that guarantee comparable capacity regions are either centralized or need computation time that increases with the size of the network. In contrast, the unique feature of the proposed distributed scheduling policies is that they are constanttime policies, i.e., the time needed for computing a schedule is independent of the network size. Hence, they can be easily deployed in large networks. I.
On Combining ShortestPath and BackPressure Routing Over Multihop Wireless Networks
, 2008
"... Abstract—Backpressure based algorithms based on the algorithm by Tassiulas and Ephremides have recently received much attention for jointly routing and scheduling over multihop wireless networks. However a significant weakness of this approach has been in routing, because the traditional backpress ..."
Abstract

Cited by 65 (5 self)
 Add to MetaCart
(Show Context)
Abstract—Backpressure based algorithms based on the algorithm by Tassiulas and Ephremides have recently received much attention for jointly routing and scheduling over multihop wireless networks. However a significant weakness of this approach has been in routing, because the traditional backpressure algorithm explores and exploits all feasible paths between each source and destination. While this extensive exploration is essential in order to maintain stability when the network is heavily loaded, under light or moderate loads, packets may be sent over unnecessarily long routes and the algorithm could be very inefficient in terms of endtoend delay and routing convergence times. This paper proposes new routing/scheduling backpressure algorithms that not only guarantees network stability (throughput optimality), but also adaptively selects a set of optimal routes based on shortestpath information in order to minimize average pathlengths between each source and destination pair. Our results indicate that under the traditional backpressure algorithm, the endtoend packet delay first decreases and then increases as a function of the network load (arrival rate). This surprising lowload behavior is explained due to the fact that the traditional backpressure algorithm exploits all paths (including very long ones) even when the traffic load is light. On the otherhand, the proposed algorithm adaptively selects a set of routes according to the traffic load so that long paths are used only when necessary, thus resulting in much smaller endtoend packet delays as compared to the traditional backpressure algorithm. I.
QCSMA: Queuelength based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks
 IN IEEE INFOCOM
, 2010
"... Recently, it has been shown that CSMAtype random access algorithms can achieve the maximum possible throughput in wireless ad hoc networks. However, the delay performance of these algorithms can be quite bad. On the other hand, although some simple heuristics (such as distributed approximations of ..."
Abstract

Cited by 64 (6 self)
 Add to MetaCart
(Show Context)
Recently, it has been shown that CSMAtype random access algorithms can achieve the maximum possible throughput in wireless ad hoc networks. However, the delay performance of these algorithms can be quite bad. On the other hand, although some simple heuristics (such as distributed approximations of greedy maximal scheduling) can yield much better delay performance for a large set of arrival rates, they may only achieve a fraction of the capacity region in general. In this paper, we propose a discretetime version of the CSMAtype random access algorithm that allows us to incorporate simple heuristics which lead to very good delay performance while retaining the throughputoptimality property. Central to our results is a discretetime distributed randomized algorithm that generates data transmission schedules according to a productform distribution, a counterpart of similar results obtained earlier for continuoustime models under the perfect CSMA assumption where collisions can never occur. An appealing feature of this algorithm is that it explicitly takes collisions into account during the exchange of control packets.
Joint asynchronous congestion control and distributed scheduling for multihop wireless networks
 in the Proceedings IEEE Infocom
"... Abstract — We consider a multihop wireless network shared by many users. For an interference model that only constrains a node to either transmit or receive at a time, but not both, we propose an architecture for fair resource allocation that consists of a distributed scheduling algorithm operating ..."
Abstract

Cited by 60 (16 self)
 Add to MetaCart
(Show Context)
Abstract — We consider a multihop wireless network shared by many users. For an interference model that only constrains a node to either transmit or receive at a time, but not both, we propose an architecture for fair resource allocation that consists of a distributed scheduling algorithm operating in conjunction with an asynchronous congestion control algorithm. We show that the proposed joint congestion control and scheduling algorithm supports at least onethird of the throughput supportable by any other algorithm, including centralized algorithms. I.
Polynomial complexity algorithms for full utilization of multihop wireless networks
"... In this paper, we propose and study a general framework that allows the development of distributed mechanisms to achieve full utilization of multihop wireless networks. In particular, we develop a generic randomized routing, scheduling and flow control scheme that is applicable to a large class o ..."
Abstract

Cited by 58 (15 self)
 Add to MetaCart
(Show Context)
In this paper, we propose and study a general framework that allows the development of distributed mechanisms to achieve full utilization of multihop wireless networks. In particular, we develop a generic randomized routing, scheduling and flow control scheme that is applicable to a large class of interference models. We prove that any algorithm which satisfies the conditions of our generic scheme maximizes network throughput and utilization. Then, we focus on a specific interference model, namely the twohop interference model, and develop distributed algorithms with polynomial communication and computation complexity. This is an important result given that earlier throughputoptimal algorithms developed for such a model relies on the solution to an NPhard problem. To the best of our knowledge, this is the first polynomial complexity algorithm that guarantees full utilization in multihop wireless networks. We further show that our algorithmic approach enables us to efficiently approximate the capacity region of a multihop wireless network.
Control for intersession network coding
 in Proc. Workshop on Network Coding, Theory & Applications
, 2007
"... Abstract — We propose a dynamic routingschedulingcoding strategy for serving multiple unicast sessions when linear network coding is allowed across sessions. Noting that the set of stabilizable throughput levels in this context is an open problem, we prove that our strategy supports any point in t ..."
Abstract

Cited by 44 (5 self)
 Add to MetaCart
Abstract — We propose a dynamic routingschedulingcoding strategy for serving multiple unicast sessions when linear network coding is allowed across sessions. Noting that the set of stabilizable throughput levels in this context is an open problem, we prove that our strategy supports any point in the nontrivial region of achievable rates recently characterized by Traskov et al. [1]. This work also provides a theoretical framework in which the gains of intersession network coding and pure routing can be compared. I.
On the design of efficient CSMA algorithms for wireless networks
 In Proceedings of CDC 2010
, 2010
"... ar ..."
(Show Context)