Results 1  10
of
130
Consistency of spectral clustering
, 2004
"... Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spe ..."
Abstract

Cited by 572 (15 self)
 Add to MetaCart
Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spectral clustering algorithms, which cluster the data with the help of eigenvectors of graph Laplacian matrices. We show that one of the two of major classes of spectral clustering (normalized clustering) converges under some very general conditions, while the other (unnormalized), is only consistent under strong additional assumptions, which, as we demonstrate, are not always satisfied in real data. We conclude that our analysis provides strong evidence for the superiority of normalized spectral clustering in practical applications. We believe that methods used in our analysis will provide a basis for future exploration of Laplacianbased methods in a statistical setting.
Locality Preserving Projection,"
 Neural Information Processing System,
, 2004
"... Abstract Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the ..."
Abstract

Cited by 414 (16 self)
 Add to MetaCart
Abstract Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA) a classical linear technique that projects the data along the directions of maximal variance. When the high dimensional data lies on a low dimensional manifold embedded in the ambient space, the Locality Preserving Projections are obtained by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. As a result, LPP shares many of the data representation properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear Embedding. Yet LPP is linear and more crucially is defined everywhere in ambient space rather than just on the training data points. This is borne out by illustrative examples on some high dimensional data sets.
The effect of network topology on the spread of epidemics
 IN IEEE INFOCOM
, 2005
"... Many network phenomena are well modeled as spreads of epidemics through a network. Prominent examples include the spread of worms and email viruses, and, more generally, faults. Many types of information dissemination can also be modeled as spreads of epidemics. In this paper we address the question ..."
Abstract

Cited by 216 (8 self)
 Add to MetaCart
(Show Context)
Many network phenomena are well modeled as spreads of epidemics through a network. Prominent examples include the spread of worms and email viruses, and, more generally, faults. Many types of information dissemination can also be modeled as spreads of epidemics. In this paper we address the question of what makes an epidemic either weak or potent. More precisely, we identify topological properties of the graph that determine the persistence of epidemics. In particular, we show that if the ratio of cure to infection rates is smaller than the spectral radius of the graph, then the mean epidemic lifetime is of order log n, where n is the number of nodes. Conversely, if this ratio is bigger than a generalization of the isoperimetric constant of the graph, then the mean epidemic lifetime is of order � Ò�, for a positive constant �. We apply these results to several network topologies including the hypercube, which is a representative connectivity graph for a distributed hash table, the complete graph, which is an important connectivity graph for BGP, and the power law graph, of which the ASlevel Internet graph is a prime example. We also study the star topology and the ErdősRényi graph as their epidemic spreading behaviors determine the spreading behavior of power law graphs.
Distributed average consensus with leastmeansquare deviation
 Journal of Parallel and Distributed Computing
, 2005
"... We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted averag ..."
Abstract

Cited by 205 (4 self)
 Add to MetaCart
(Show Context)
We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted average of its neighbors ’ values, and each new value is corrupted by an additive noise with zero mean. The quality of consensus can be measured by the total meansquare deviation of the individual variables from their average, which converges to a steadystate value. We consider the problem of finding the (symmetric) edge weights that result in the least meansquare deviation in steady state. We show that this problem can be cast as a convex optimization problem, so the global solution can be found efficiently. We describe some computational methods for solving this problem, and compare the weights and the meansquare deviations obtained by this method and several other weight design methods.
GraphDriven Features Extraction From Microarray Data
, 2002
"... Gene function prediction from microarray data is a first step toward better understanding the machinery of the cell from relatively cheap and easytoproduce data. In this paper we investigate whether the knowledge of many metabolic pathways and their catalyzing enzymes accumulated over the years ca ..."
Abstract

Cited by 51 (3 self)
 Add to MetaCart
Gene function prediction from microarray data is a first step toward better understanding the machinery of the cell from relatively cheap and easytoproduce data. In this paper we investigate whether the knowledge of many metabolic pathways and their catalyzing enzymes accumulated over the years can help improve the performance of classifiers for this problem.
Some exactly solvable models of urn process theory
, 2006
"... We establish a fundamental isomorphism between discretetime balanced urn processes and certain ordinary differential systems, which are nonlinear, autonomous, and of a simple monomial form. As a consequence, all balanced urn processes with balls of two colours are proved to be analytically solvable ..."
Abstract

Cited by 48 (1 self)
 Add to MetaCart
We establish a fundamental isomorphism between discretetime balanced urn processes and certain ordinary differential systems, which are nonlinear, autonomous, and of a simple monomial form. As a consequence, all balanced urn processes with balls of two colours are proved to be analytically solvable in finite terms. The corresponding generating functions are expressed in terms of certain Abelian integrals over curves of the Fermat type (which are also hypergeometric functions), together with their inverses. A consequence is the unification of the analyses of many classical models, including those related to the coupon collector’s problem, particle transfer (the Ehrenfest model), Friedman’s “adverse campaign ” and Pólya’s contagion model, as well as the OK Corral model (a basic case of Lanchester’s theory of conflicts). In each case, it is possible to quantify very precisely the probable composition of the urn at any discrete instant. We study here in detail “semisacrificial ” urns, for which the following are obtained: a Gaussian limiting distribution with speed of convergence estimates as well as a characterization of the large and extreme large deviation regimes. We also work out explicitly the case of 2dimensional triangular models, where local limit laws of the stable type are obtained. A few models of dimension three or greater, e.g., “autistic ” (generalized Pólya), cyclic chambers
Discrete Nodal Domain Theorems
, 2000
"... We give a detailed proof for two discrete analogues of Courant’s Nodal Domain Theorem. ..."
Abstract

Cited by 41 (10 self)
 Add to MetaCart
(Show Context)
We give a detailed proof for two discrete analogues of Courant’s Nodal Domain Theorem.
Graph edit distance from spectral seriation
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2005
"... This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string seq ..."
Abstract

Cited by 40 (6 self)
 Add to MetaCart
(Show Context)
This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graphmatching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems.
A distributed newton method for network utility maximization
, 2010
"... Abstract — Most existing work uses dual decomposition and subgradient methods to solve Network Utility Maximization (NUM) problems in a distributed manner, which suffer from slow rate of convergence properties. This work develops an alternative distributed Newtontype fast converging algorithm for s ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
(Show Context)
Abstract — Most existing work uses dual decomposition and subgradient methods to solve Network Utility Maximization (NUM) problems in a distributed manner, which suffer from slow rate of convergence properties. This work develops an alternative distributed Newtontype fast converging algorithm for solving network utility maximization problems with selfconcordant utility functions. By using novel matrix splitting techniques, both primal and dual updates for the Newton step can be computed using iterative schemes in a decentralized manner with limited information exchange. Similarly, the stepsize can be obtained via an iterative consensusbased averaging scheme. We show that even when the Newton direction and the stepsize in our method are computed within some error (due to finite truncation of the iterative schemes), the resulting objective function value still converges superlinearly to an explicitly characterized error neighborhood. Simulation results demonstrate significant convergence rate improvement of our algorithm relative to the existing subgradient methods based on dual decomposition. I.
Harmonic analysis on metrized graphs
 CANAD. J. MATH
"... This paper studies the Laplacian operator on a metrized graph, and its spectral theory. ..."
Abstract

Cited by 38 (6 self)
 Add to MetaCart
This paper studies the Laplacian operator on a metrized graph, and its spectral theory.