Results 1  10
of
141
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1713 (13 self)
 Add to MetaCart
(Show Context)
Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly different ways. Second, many of these algorithms have no proof that they will actually compute a reasonable clustering. In this paper, we present a simple spectral clustering algorithm that can be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze the algorithm, and give conditions under which it can be expected to do well. We also show surprisingly good experimental results on a number of challenging clustering problems.
Learning to detect natural image boundaries using local brightness, color, and texture cues
 PAMI
, 2004
"... The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these fe ..."
Abstract

Cited by 625 (18 self)
 Add to MetaCart
The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, we train a classifier using human labeled images as ground truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present precisionrecall curves showing that the resulting detector significantly outperforms existing approaches. Our two main results are 1) that cue combination can be performed adequately with a simple linear model and 2) that a proper, explicit treatment of texture is required to detect boundaries in natural images.
Selftuning spectral clustering
 Advances in Neural Information Processing Systems 17
, 2004
"... We study a number of open issues in spectral clustering: (i) Selecting the appropriate scale of analysis, (ii) Handling multiscale data, (iii) Clustering with irregular background clutter, and, (iv) Finding automatically the number of groups. We first propose that a ‘local ’ scale should be used to ..."
Abstract

Cited by 362 (2 self)
 Add to MetaCart
We study a number of open issues in spectral clustering: (i) Selecting the appropriate scale of analysis, (ii) Handling multiscale data, (iii) Clustering with irregular background clutter, and, (iv) Finding automatically the number of groups. We first propose that a ‘local ’ scale should be used to compute the affinity between each pair of points. This local scaling leads to better clustering especially when the data includes multiple scales and when the clusters are placed within a cluttered background. We further suggest exploiting the structure of the eigenvectors to infer automatically the number of groups. This leads to a new algorithm in which the final randomly initialized kmeans stage is eliminated. 1
Learning a classification model for segmentation
 In Proc. 9th Int. Conf. Computer Vision
, 2003
"... We propose a twoclass classification model for grouping. Human segmented natural images are used as positive examples. Negative examples of grouping are constructed by randomly matching human segmentations and images. In a preprocessing stage an image is oversegmented into superpixels. We define a ..."
Abstract

Cited by 281 (2 self)
 Add to MetaCart
(Show Context)
We propose a twoclass classification model for grouping. Human segmented natural images are used as positive examples. Negative examples of grouping are constructed by randomly matching human segmentations and images. In a preprocessing stage an image is oversegmented into superpixels. We define a variety of features derived from the classical Gestalt cues, including contour, texture, brightness and good continuation. Informationtheoretic analysis is applied to evaluate the power of these grouping cues. We train a linear classifier to combine these features. To demonstrate the power of the classification model, a simple algorithm is used to randomly search for good segmentations. Results are shown on a wide range of images. 1.
A Random Walks View of Spectral Segmentation
, 2001
"... We present a new view of clustering and segmentation by pairwise similarities. We interpret the similarities as edge flows in a Markov random walk and study the eigenvalues and eigenvectors of the walk's transition matrix. This view shows that spectral methods for clustering and segmentati ..."
Abstract

Cited by 215 (7 self)
 Add to MetaCart
We present a new view of clustering and segmentation by pairwise similarities. We interpret the similarities as edge flows in a Markov random walk and study the eigenvalues and eigenvectors of the walk's transition matrix. This view shows that spectral methods for clustering and segmentation have a probabilistic foundation. We prove that the Normalized Cut method arises naturally from our framework and we provide a complete characterization of the cases when the Normalized Cut algorithm is exact. Then we discuss other spectral segmentation and clustering methods showing that they are essentially the same as NCut.
Learning spectral clustering
, 2003
"... Spectral clustering refers to a class of techniques which rely on the eigenstructure of a similarity matrix to partition points into disjoint clusters with points in the same cluster having high similarity and points in different clusters having low similarity. In this paper, we derive a new cost fu ..."
Abstract

Cited by 118 (4 self)
 Add to MetaCart
(Show Context)
Spectral clustering refers to a class of techniques which rely on the eigenstructure of a similarity matrix to partition points into disjoint clusters with points in the same cluster having high similarity and points in different clusters having low similarity. In this paper, we derive a new cost function for spectral clustering based on a measure of error between a given partition and a solution of the spectral relaxation of a minimum normalized cut problem. Minimizing this cost function with respect to the partition leads to a new spectral clustering algorithm. Minimizing with respect to the similarity matrix leads to an algorithm for learning the similarity matrix. We develop a tractable approximation of our cost function that is based on the power method of computing eigenvectors. 1
Spectral learning
 In IJCAI
, 2003
"... We present a simple, easily implemented spectral learning algorithm which applies equally whether we have no supervisory information, pairwise link constraints, or labeled examples. In the unsupervised case, it performs consistently with other spectral clustering algorithms. In the supervised case, ..."
Abstract

Cited by 106 (6 self)
 Add to MetaCart
We present a simple, easily implemented spectral learning algorithm which applies equally whether we have no supervisory information, pairwise link constraints, or labeled examples. In the unsupervised case, it performs consistently with other spectral clustering algorithms. In the supervised case, our approach achieves high accuracy on the categorization of thousands of documents given only a few dozen labeled training documents for the 20 Newsgroups data set. Furthermore, its classification accuracy increases with the addition of unlabeled documents, demonstrating effective use of unlabeled data. By using normalized affinity matrices which are both symmetric and stochastic, we also obtain both a probabilistic interpretation of our method and certain guarantees of performance. 1
A survey of kernel and spectral methods for clustering,”
 Pattern Recognit.,
, 2008
"... Abstract Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a ..."
Abstract

Cited by 88 (5 self)
 Add to MetaCart
(Show Context)
Abstract Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., Kmeans, SOM and Neural Gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel Kmeans clustering algorithm.
A Comparison of Spectral Clustering Algorithms
, 2003
"... Spectral Clustering has become quite popular over the last few years and several new algorithms have been published. In this paper, we compare several of the bestknown algorithms from the point of view of clustering quality over arti cial and real datasets. We implement many variations of the ex ..."
Abstract

Cited by 84 (3 self)
 Add to MetaCart
Spectral Clustering has become quite popular over the last few years and several new algorithms have been published. In this paper, we compare several of the bestknown algorithms from the point of view of clustering quality over arti cial and real datasets. We implement many variations of the existing spectral algorithms and compare their performance to see which features are more important. We also demonstrate that spectral methods show competitive performance on real dataset with respect to existing methods.