Results 1  10
of
94
Poweraware speed scaling in processor sharing systems
 In Proc. of INFOCOM
, 2009
"... Abstract—Energy use of computer communication systems has quickly become a vital design consideration. One effective method for reducing energy consumption is dynamic speed scaling, which adapts the processing speed to the current load. This paper studies how to optimally scale speed to balance mean ..."
Abstract

Cited by 70 (14 self)
 Add to MetaCart
(Show Context)
Abstract—Energy use of computer communication systems has quickly become a vital design consideration. One effective method for reducing energy consumption is dynamic speed scaling, which adapts the processing speed to the current load. This paper studies how to optimally scale speed to balance mean response time and mean energy consumption under processor sharing scheduling. Both bounds and asymptotics for the optimal speed scaling scheme are provided. These results show that a simple scheme that halts when the system is idle and uses a static rate while the system is busy provides nearly the same performance as the optimal dynamic speed scaling. However, the results also highlight that dynamic speed scaling provides at least one key benefit — significantly improved robustness to bursty traffic and misestimation of workload parameters. I.
K.: Speed scaling with an arbitrary power function
 In: Proc. 20th ACMSIAM Symposium on Discrete Algorithm
, 2009
"... “What matters most to the computer designers at Google is not speed, but power, low power, because data centers can consume as much electricity as a city.” —Dr. Eric Schmidt, CEO of Google [12]. All of the theoretical speed scaling research to date has assumed that the power function, which expresse ..."
Abstract

Cited by 62 (9 self)
 Add to MetaCart
(Show Context)
“What matters most to the computer designers at Google is not speed, but power, low power, because data centers can consume as much electricity as a city.” —Dr. Eric Schmidt, CEO of Google [12]. All of the theoretical speed scaling research to date has assumed that the power function, which expresses the power consumption P as a function of the processor speed s, is of the form P = s α, where α> 1 is some constant. Motivated in part by technological advances, we initiate a study of speed scaling with arbitrary power functions. We consider the problem of minimizing the total flow plus energy. Our main result is a (3+ǫ)competitive algorithm for this problem, that holds for essentially any power function. We also give a (2+ǫ)competitive algorithm for the objective of fractional weighted flow plus energy. Even for power functions of the form s α, it was not previously known how to obtain competitiveness independent of α for these problems. We also introduce a model of allowable speeds that generalizes all known models in the literature. 1
Speed Scaling Functions for Flow Time Scheduling based on Active Job Count
"... Abstract. We study online scheduling to minimize flow time plus energy usage in the dynamic speed scaling model. We devise new speed scaling functions that depend on the number of active jobs, replacing the existing speed scaling functions in the literature that depend on the remaining work of activ ..."
Abstract

Cited by 46 (12 self)
 Add to MetaCart
(Show Context)
Abstract. We study online scheduling to minimize flow time plus energy usage in the dynamic speed scaling model. We devise new speed scaling functions that depend on the number of active jobs, replacing the existing speed scaling functions in the literature that depend on the remaining work of active jobs. The new speed functions are more stable and also more efficient. They can support better job selection strategies to improve the competitive ratios of existing algorithms [5,8], and, more importantly, to remove the requirement of extra speed. These functions further distinguish themselves from others as they can readily be used in the nonclairvoyant model (where the size of a job is only known when the job finishes). As a first step, we study the scheduling of batched jobs (i.e., jobs with the same release time) in the nonclairvoyant model and present the first competitive algorithm for minimizing flow time plus energy (as well as for weighted flow time plus energy); the performance is close to optimal. 1
Optimality, fairness, and robustness in speed scaling designs
"... System design must strike a balance between energy and performance by carefully selecting the speed at which the system will run. In this work, we examine fundamental tradeoffs incurred when designing a speed scaler to minimize a weighted sum of expected response time and energy use per job. We prov ..."
Abstract

Cited by 45 (14 self)
 Add to MetaCart
System design must strike a balance between energy and performance by carefully selecting the speed at which the system will run. In this work, we examine fundamental tradeoffs incurred when designing a speed scaler to minimize a weighted sum of expected response time and energy use per job. We prove that a popular dynamic speed scaling algorithm is 2competitive for this objective and that no “natural” speed scaler can improve on this. Further, we prove that energyproportional speed scaling works well across two common scheduling policies: Shortest Remaining Processing Time (SRPT) and Processor Sharing (PS). Third, we show that under SRPT and PS, gatedstatic speed scaling is nearly optimal when the mean workload is known, but that dynamic speed scaling provides robustness against uncertain workloads. Finally, we prove that speed scaling magnifies unfairness, notably SRPT’s bias against large jobs and the bias against short jobs in nonpreemptive policies. However, PS remains fair under speed scaling. Together, these results show that the speed scalers studied here can achieve any two, but only two, of optimality, fairness, and robustness. 1.
Poweraware scheduling for makespan and flow
 In Proc. 18th Annual ACM Symp. Parallelism in Algorithms and Architectures
, 2006
"... We consider offline scheduling algorithms that incorporate speed scaling to address the bicriteria problem of minimizing energy consumption and a scheduling metric. For makespan, we give a lineartime algorithm to compute all nondominated solutions for the general uniprocessor problem and a fast a ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
(Show Context)
We consider offline scheduling algorithms that incorporate speed scaling to address the bicriteria problem of minimizing energy consumption and a scheduling metric. For makespan, we give a lineartime algorithm to compute all nondominated solutions for the general uniprocessor problem and a fast arbitrarilygood approximation for multiprocessor problems when every job requires the same amount of work. We also show that the multiprocessor problem becomes NPhard when jobs can require different amounts of work. For total flow, we show that the optimal flow corresponding to a particular energy budget cannot be exactly computed on a machine supporting exact real arithmetic, including the extraction of roots. This hardness result holds even when scheduling equalwork jobs on a uniprocessor. We do, however, extend previous work by Pruhs et al. to give an arbitrarilygood approximation for scheduling equalwork jobs on a multiprocessor. 1
Speed scaling on parallel processors
 In Proc. 19th Annual Symp. on Parallelism in Algorithms and Architectures (SPAA’07
, 2007
"... In this paper we investigate algorithmic instruments leading to low power consumption in computing devices. While previous work on energyefficient algorithms has mostly focused on single processor environments, in this paper we investigate multiprocessor settings. We study the basic problem of sch ..."
Abstract

Cited by 40 (3 self)
 Add to MetaCart
(Show Context)
In this paper we investigate algorithmic instruments leading to low power consumption in computing devices. While previous work on energyefficient algorithms has mostly focused on single processor environments, in this paper we investigate multiprocessor settings. We study the basic problem of scheduling a set of jobs, each specified by a release time, a deadline and a processing volume, on variable speed processors so as to minimize the total energy consumption. We first settle the complexity of speed scaling with unit size jobs. More specifically, we devise a polynomial time algorithm for agreeable deadlines and prove NPhardness results for arbitrary release dates and deadlines. For the latter setting we also develop a polynomial time algorithm achieving a constant factor approximation guarantee that is independent of the number of processors. Additionally, we study speed scaling of jobs with arbitrary processing requirements and, again, develop constant factor approximation algorithms. We finally transform our offline algorithms into constant competitive online strategies.
Scheduling for speed bounded processors
 In Proc. ICALP
, 2008
"... Abstract. We consider online scheduling algorithms in the dynamic speed scaling model, where a processor can scale its speed between 0 and some maximum speed T. The processor uses energy at rate s α when run at speed s, where α> 1 is a constant. Most modern processors use dynamic speed scaling to ..."
Abstract

Cited by 37 (12 self)
 Add to MetaCart
(Show Context)
Abstract. We consider online scheduling algorithms in the dynamic speed scaling model, where a processor can scale its speed between 0 and some maximum speed T. The processor uses energy at rate s α when run at speed s, where α> 1 is a constant. Most modern processors use dynamic speed scaling to manage their energy usage. This leads to the problem of designing execution strategies that are both energy efficient, and yet have almost optimum performance. We consider two problems in this model and give essentially optimum possible algorithms for them. In the first problem, jobs with arbitrary sizes and deadlines arrive online and the goal is to maximize the throughput, i.e. the total size of jobs completed successfully. We give an algorithm that is 4competitive for throughput and O(1)competitive for the energy used. This improves upon the 14 throughput competitive algorithm of Chan et al. [10]. Our throughput guarantee is optimal as any online algorithm must be at least 4competitive even if the energy concern is ignored [7]. In the second problem, we consider optimizing the tradeoff between the total flow time incurred and the energy consumed by the jobs. We give a 4competitive algorithm to minimize total flow time plus energy for unweighted unit size jobs, and a (2 + o(1))α / ln αcompetitive algorithm to minimize fractional weighted flow time plus energy. Prior to our work, these guarantees were known only when the processor speed was unbounded (T = ∞) [4]. 1
Nonclairvoyant Speed Scaling for Flow and Energy
"... We study online nonclairvoyant speed scaling to minimize total flow time plus energy. We first consider the traditional model where the power function is P(s) = s α. We give a nonclairvoyant algorithm that is shown to be O(α 3)competitive. We then show an Ω(α 1/3−ǫ) lower bound on the competitive ..."
Abstract

Cited by 34 (14 self)
 Add to MetaCart
(Show Context)
We study online nonclairvoyant speed scaling to minimize total flow time plus energy. We first consider the traditional model where the power function is P(s) = s α. We give a nonclairvoyant algorithm that is shown to be O(α 3)competitive. We then show an Ω(α 1/3−ǫ) lower bound on the competitive ratio of any nonclairvoyant algorithm. We also show that there are power functions for which no nonclairvoyant algorithm can be O(1)competitive. 1
Energy efficient online deadline scheduling
 In Proc. SODA
, 2007
"... Abstract. This paper extends the study of online algorithms for energyefficient deadline scheduling to the overloaded setting. Specifically, we consider a processor that can vary its speed between 0 and a maximum speed T to minimize its energy usage (of which the rate is roughly a cubic function of ..."
Abstract

Cited by 31 (12 self)
 Add to MetaCart
(Show Context)
Abstract. This paper extends the study of online algorithms for energyefficient deadline scheduling to the overloaded setting. Specifically, we consider a processor that can vary its speed between 0 and a maximum speed T to minimize its energy usage (of which the rate is roughly a cubic function of the speed). As the speed is upper bounded, the system may be overloaded with jobs and no scheduling algorithms can meet the deadlines of all jobs. An optimal schedule is expected to maximize the throughput, and furthermore, its energy usage should be the smallest among all schedules that achieve the maximum throughput. In designing a scheduling algorithm, one has to face the dilemma of selecting more jobs and being conservative in energy usage. Even if we ignore energy usage, the best possible online algorithm is 4competitive on throughput [12]. On the other hand, existing work on energyefficient scheduling focuses on minimizing the energy to complete all jobs on a processor with unbounded speed, giving several O(1)competitive algorithms with respect to the energy usage [2,20]. This paper presents the first online algorithm for the more realistic setting where processor speed is bounded and the system may be overloaded; the algorithm is O(1)competitive on both throughput and energy usage. If the maximum speed of the online scheduler is relaxed slightly to (1+ǫ)T for some ǫ> 0, we can improve the competitive ratio on throughput to arbitrarily close to one, while maintaining O(1)competitive on energy usage. 1
Speed Scaling of Processes with Arbitrary Speedup Curves on a Multiprocessor
"... We consider the setting of a multiprocessor where the speeds of the m processors can be individually scaled. Jobs arrive over time and have varying degrees of parallelizability. A nonclairvoyant scheduler must assign the processes to processors, and scale the speeds of the processors. We consider th ..."
Abstract

Cited by 23 (7 self)
 Add to MetaCart
(Show Context)
We consider the setting of a multiprocessor where the speeds of the m processors can be individually scaled. Jobs arrive over time and have varying degrees of parallelizability. A nonclairvoyant scheduler must assign the processes to processors, and scale the speeds of the processors. We consider the objective of energy plus flow time. We assume that a processor running at speed s uses power sα for some constant α> 1. For processes that may have side effects or that are not checkpointable, we show an Ω(m (α−1)/α2) bound on the competitive ratio of any randomized algorithm. For checkpointable processes without side effects, we give an O(logm)competitive algorithm. Thus for processes that may have side effects or that are not checkpointable, the achievable competitive ratio grows quickly with the number of processors, but for checkpointable processes without side effects, the achievable competitive ratio grows slowly with the number of processors. We then show a lower bound of Ω(log1/α m) on the competitive ratio of any randomized algorithm for checkpointable processes without side effects. 1