Results 1  10
of
215
On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration
 SIGKDD'02
, 2002
"... ... mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in ..."
Abstract

Cited by 325 (59 self)
 Add to MetaCart
... mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in the case of classification and clustering, model accuracy in the case of segmentation) offer an amount of "improvement" that would have been completely dwarfed by the variance that would have been observed by testing on many real world datasets, or the variance that would have been observed by changing minor (unstated) implementation details. To illustrate our point
Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases
 In proceedings of ACM SIGMOD Conference on Management of Data
, 2002
"... Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced d ..."
Abstract

Cited by 316 (33 self)
 Add to MetaCart
(Show Context)
Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced data with a multidimensional index structure. Many dimensionality reduction techniques have been proposed, including Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and the Discrete Wavelet Transform (DWT). In this work we introduce a new dimensionality reduction technique which we call Adaptive Piecewise Constant Approximation (APCA). While previous techniques (e.g., SVD, DFT and DWT) choose a common representation for all the items in the database that minimizes the global reconstruction error, APCA approximates each time series by a set of constant value segments' of varying lengths' such that their individual reconstruction errors' are minimal. We show how APCA can be indexed using a multidimensional index structure. We propose two distance measures in the indexed space that exploit the high fidelity of APCA for fast searching: a lower bounding Euclidean distance approximation, and a nonlower bounding, but very tight Euclidean distance approximation and show how they can support fast exact searchin& and even faster approximate searching on the same index structure. We theoretically and empirically compare APCA to all the other techniques and demonstrate its' superiority.
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
, 2000
"... The problem of similarity search in large time series databases has attracted much attention recently. It is a nontrivial problem because of the inherent high dimensionality of the data. The most promising solutions involve first performing dimensionality reduction on the data, and then indexing th ..."
Abstract

Cited by 240 (21 self)
 Add to MetaCart
(Show Context)
The problem of similarity search in large time series databases has attracted much attention recently. It is a nontrivial problem because of the inherent high dimensionality of the data. The most promising solutions involve first performing dimensionality reduction on the data, and then indexing the reduced data with a spatial access method. Three major dimensionality reduction techniques have been proposed, Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and more recently the Discrete Wavelet Transform (DWT). In this work we introduce a new dimensionality reduction technique which we call Piecewise Aggregate Approximation (PAA). We theoretically and empirically compare it to the other techniques and demonstrate its superiority. In addition to being competitive with or faster than the other methods, our approach has numerous other advantages. It is simple to understand and to implement, it allows more flexible distance measures, including weighted Euclidean queries, and the index can be built in linear time.
Probabilistic discovery of time series motifs
, 2003
"... Several important time series data mining problems reduce to the core task of finding approximately repeated subsequences in a longer time series. In an earlier work, we formalized the idea of approximately repeated subsequences by introducing the notion of time series motifs. Two limitations of thi ..."
Abstract

Cited by 185 (26 self)
 Add to MetaCart
Several important time series data mining problems reduce to the core task of finding approximately repeated subsequences in a longer time series. In an earlier work, we formalized the idea of approximately repeated subsequences by introducing the notion of time series motifs. Two limitations of this work were the poor scalability of the motif discovery algorithm, and the inability to discover motifs in the presence of noise. Here we address these limitations by introducing a novel algorithm inspired by recent advances in the problem of pattern discovery in biosequences. Our algorithm is probabilistic in nature, but as we show empirically and theoretically, it can find time series motifs with very high probability even in the presence of noise or “don’t care ” symbols. Not only is the algorithm fast, but it is an anytime algorithm, producing likely candidate motifs almost immediately, and gradually improving the quality of results over time.
Robust and fast similarity search for moving object trajectories
 In Proc. ACM SIGMOD Int. Conf. on Management of Data
, 2005
"... An important consideration in similaritybased retrieval of moving object trajectories is the definition of a distance function. The existing distance functions are usually sensitive to noise, shifts and scaling of data that commonly occur due to sensor failures, errors in detection techniques, dis ..."
Abstract

Cited by 155 (14 self)
 Add to MetaCart
(Show Context)
An important consideration in similaritybased retrieval of moving object trajectories is the definition of a distance function. The existing distance functions are usually sensitive to noise, shifts and scaling of data that commonly occur due to sensor failures, errors in detection techniques, disturbance signals, and different sampling rates. Cleaning data to eliminate these is not always possible. In this paper, we introduce a novel distance function, Edit Distance on Real sequence (EDR) which is robust against these data imperfections. Analysis and comparison of EDR with other popular distance functions, such as Euclidean distance, Dynamic Time Warping (DTW), Edit distance with Real Penalty (ERP), and Longest Common Subsequences (LCSS), indicate that EDR is more robust than Euclidean distance, DTW and ERP, and it is on average 50% more accurate than LCSS. We also develop three pruning techniques to improve the retrieval efficiency of EDR and show that these techniques can be combined effectively in a search, increasing the pruning power significantly. The experimental results confirm the superior efficiency of the combined methods. 1.
Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures
"... The last decade has witnessed a tremendous growths of interests in applications that deal with querying and mining of time series data. Numerous representation methods for dimensionality reduction and similarity measures geared towards time series have been introduced. Each individual work introduci ..."
Abstract

Cited by 141 (24 self)
 Add to MetaCart
(Show Context)
The last decade has witnessed a tremendous growths of interests in applications that deal with querying and mining of time series data. Numerous representation methods for dimensionality reduction and similarity measures geared towards time series have been introduced. Each individual work introducing a particular method has made specific claims and, aside from the occasional theoretical justifications, provided quantitative experimental observations. However, for the most part, the comparative aspects of these experiments were too narrowly focused on demonstrating the benefits of the proposed methods over some of the previously introduced ones. In order to provide a comprehensive validation, we conducted an extensive set of time series experiments reimplementing 8 different representation methods and 9 similarity measures and their variants, and testing their effectiveness on 38 time series data sets from a wide variety of application domains. In this paper, we give an overview of these different techniques and present our comparative experimental findings regarding their effectiveness. Our experiments have provided both a unified validation of some of the existing achievements, and in some cases, suggested that certain claims in the literature may be unduly optimistic. 1.
Landmarks: a new model for similaritybased pattern querying in time series databases
 In ICDE
, 2000
"... In this paper we present the Landmark Model, a model for time series that yields new techniques for similaritybased time series pattern querying. The Landmark Model does not follow traditional similarity models that rely on pointwise Euclidean distance. Instead, it leads to Landmark Similarity, a g ..."
Abstract

Cited by 91 (6 self)
 Add to MetaCart
In this paper we present the Landmark Model, a model for time series that yields new techniques for similaritybased time series pattern querying. The Landmark Model does not follow traditional similarity models that rely on pointwise Euclidean distance. Instead, it leads to Landmark Similarity, a general model of similarity that is consistent with human intuition and episodic memory. By tracking different specific subsets of features of landmarks, we can efficiently compute different Landmark Similarity measures that are invariant under corresponding subsets of six transformations; namely, Shifting, Uniform
Scaling up Dynamic Time Warping for Datamining Applications
 In Proc. 6th Int. Conf. on Knowledge Discovery and Data Mining
, 2000
"... There has been much recent interest in adapting data mining algorithms to time series databases. Most of these algorithms need to compare time series. Typically some variation of Euclidean distance is used. However, as we demonstrate in this paper, Euclidean distance can be an extremely brittle dist ..."
Abstract

Cited by 84 (3 self)
 Add to MetaCart
There has been much recent interest in adapting data mining algorithms to time series databases. Most of these algorithms need to compare time series. Typically some variation of Euclidean distance is used. However, as we demonstrate in this paper, Euclidean distance can be an extremely brittle distance measure. Dynamic time warping (DTW) has been suggested as a technique to allow more robust distance calculations, however it is computationally expensive. In this paper we introduce a modification of DTW which operates on a higher level abstraction of the data, in particular, a Piecewise Aggregate Approximation (PAA). Our approach allows us to outperform DTW by one to two orders of magnitude, with no loss of accuracy.
Similarity search over time series data using wavelets
 In ICDE
, 2002
"... We consider the use of wavelet transformations as a dimensionality reduction technique to permit efficient similarity search over highdimensional timeseries data. While numerous transformations have been proposed and studied, the only wavelet that has been shown to be effective for this applicatio ..."
Abstract

Cited by 82 (0 self)
 Add to MetaCart
We consider the use of wavelet transformations as a dimensionality reduction technique to permit efficient similarity search over highdimensional timeseries data. While numerous transformations have been proposed and studied, the only wavelet that has been shown to be effective for this application is the Haar wavelet. In this work, we observe that a large class of wavelet transformations (not only orthonormal wavelets but also biorthonormal wavelets)can be used to support similarity search. This class includes the most popular and most effective wavelets being used in image compression. We present a detailed performance study of the effects of using different wavelets on the performance of similarity search for timeseries data. We include several wavelets that outperform both the Haar wavelet and the best known nonwavelet transformations for this application. To ensure our results are usable by an application engineer, we also show how to configure an indexing strategy for the best performing transformations. Finally, we identify classes of data that can be indexed efficiently using these wavelet transformations. 1.
Making Timeseries Classification More Accurate Using Learned Constraints
, 2004
"... It has long been known that Dynamic Time Warping (DTW) is superior to Euclidean distance for classification and clustering of time series. However, until lately, most research has utilized Euclidean distance because it is more efficiently calculated. A recently introduced technique that greatly miti ..."
Abstract

Cited by 82 (18 self)
 Add to MetaCart
(Show Context)
It has long been known that Dynamic Time Warping (DTW) is superior to Euclidean distance for classification and clustering of time series. However, until lately, most research has utilized Euclidean distance because it is more efficiently calculated. A recently introduced technique that greatly mitigates DTWs demanding CPU time has sparked a flurry of research activity. However, the technique and its many extensions still only allow DTW to be applied to moderately large datasets. In addition, almost all of the research on DTW has focused exclusively on speeding up its calculation; there has been little work done on improving its accuracy. In this work, we target the accuracy aspect of DTW performance and introduce a new framework that learns arbitrary constraints on the warping path of the DTW calculation. Apart from improving the accuracy of classification, our technique as a side effect speeds up DTW by a wide margin as well. We show the utility of our approach on datasets from diverse domains and demonstrate significant gains in accuracy and efficiency.