Results 1  10
of
68
Tensor Decompositions and Applications
 SIAM REVIEW
, 2009
"... This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract

Cited by 705 (17 self)
 Add to MetaCart
(Show Context)
This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, etc. Two particular tensor decompositions can be considered to be higherorder extensions of the matrix singular value decompo
sition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rankone tensors, and the Tucker decomposition is a higherorder form of principal components analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The Nway Toolbox and Tensor Toolbox, both for MATLAB, and the Multilinear Engine are examples of software packages for working with tensors.
TENSOR RANK AND THE ILLPOSEDNESS OF THE BEST LOWRANK APPROXIMATION PROBLEM
"... There has been continued interest in seeking a theorem describing optimal lowrank approximations to tensors of order 3 or higher, that parallels the Eckart–Young theorem for matrices. In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike matrices, te ..."
Abstract

Cited by 193 (13 self)
 Add to MetaCart
There has been continued interest in seeking a theorem describing optimal lowrank approximations to tensors of order 3 or higher, that parallels the Eckart–Young theorem for matrices. In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike matrices, tensors of order 3 or higher can fail to have best rankr approximations. The phenomenon is much more widespread than one might suspect: examples of this failure can be constructed over a wide range of dimensions, orders and ranks, regardless of the choice of norm (or even Brègman divergence). Moreover, we show that in many instances these counterexamples have positive volume: they cannot be regarded as isolated phenomena. In one extreme case, we exhibit a tensor space in which no rank3 tensor has an optimal rank2 approximation. The notable exceptions to this misbehavior are rank1 tensors and order2 tensors (i.e. matrices). In a more positive spirit, we propose a natural way of overcoming the illposedness of the lowrank approximation problem, by using weak solutions when true solutions do not exist. For this to work, it is necessary to characterize the set of weak solutions, and we do this in the case of rank 2, order 3 (in arbitrary dimensions). In our work we emphasize the importance of closely studying concrete lowdimensional examples as a first step towards more general results. To this end, we present a detailed analysis of equivalence classes of 2 × 2 × 2 tensors, and we develop methods for extending results upwards to higher orders and dimensions. Finally, we link our work to existing studies of tensors from an algebraic geometric point of view. The rank of a tensor can in theory be given a semialgebraic description; in other words, can be determined by a system of polynomial inequalities. We study some of these polynomials in cases of interest to us; in particular we make extensive use of the hyperdeterminant ∆ on R 2×2×2.
Symmetric tensors and symmetric tensor rank
 Scientific Computing and Computational Mathematics (SCCM
, 2006
"... Abstract. A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank1 orderk tensor is the outer product of k nonzero vectors. An ..."
Abstract

Cited by 101 (22 self)
 Add to MetaCart
(Show Context)
Abstract. A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank1 orderk tensor is the outer product of k nonzero vectors. Any symmetric tensor can be decomposed into a linear combination of rank1 tensors, each of them being symmetric or not. The rank of a symmetric tensor is the minimal number of rank1 tensors that is necessary to reconstruct it. The symmetric rank is obtained when the constituting rank1 tensors are imposed to be themselves symmetric. It is shown that rank and symmetric rank are equal in a number of cases, and that they always exist in an algebraically closed field. We will discuss the notion of the generic symmetric rank, which, due to the work of Alexander and Hirschowitz, is now known for any values of dimension and order. We will also show that the set of symmetric tensors of symmetric rank at most r is not closed, unless r = 1. Key words. Tensors, multiway arrays, outer product decomposition, symmetric outer product decomposition, candecomp, parafac, tensor rank, symmetric rank, symmetric tensor rank, generic symmetric rank, maximal symmetric rank, quantics AMS subject classifications. 15A03, 15A21, 15A72, 15A69, 15A18 1. Introduction. We
Most tensor problems are NP hard
 CORR
, 2009
"... The idea that one might extend numerical linear algebra, the collection of matrix computational methods that form the workhorse of scientific and engineering computing, to numerical multilinear algebra, an analogous collection of tools involving hypermatrices/tensors, appears very promising and has ..."
Abstract

Cited by 44 (6 self)
 Add to MetaCart
(Show Context)
The idea that one might extend numerical linear algebra, the collection of matrix computational methods that form the workhorse of scientific and engineering computing, to numerical multilinear algebra, an analogous collection of tools involving hypermatrices/tensors, appears very promising and has attracted a lot of attention recently. We examine here the computational tractability of some core problems in numerical multilinear algebra. We show that tensor analogues of several standard problems that are readily computable in the matrix (i.e. 2tensor) case are NP hard. Our list here includes: determining the feasibility of a system of bilinear equations, determining an eigenvalue, a singular value, or the spectral norm of a 3tensor, determining a best rank1 approximation to a 3tensor, determining the rank of a 3tensor over R or C. Hence making tensor computations feasible is likely to be a challenge.
A Spectral Algorithm for Latent Dirichlet Allocation
"... Topic modeling is a generalization of clustering that posits that observations (words in a document) are generated by multiple latent factors (topics), as opposed to just one. This increased representational power comes at the cost of a more challenging unsupervised learning problem of estimating th ..."
Abstract

Cited by 41 (9 self)
 Add to MetaCart
Topic modeling is a generalization of clustering that posits that observations (words in a document) are generated by multiple latent factors (topics), as opposed to just one. This increased representational power comes at the cost of a more challenging unsupervised learning problem of estimating the topicword distributions when only words are observed, and the topics are hidden. This work provides a simple and efficient learning procedure that is guaranteed to recover the parameters for a wide class of topic models, including Latent Dirichlet Allocation (LDA). For LDA, the procedure correctly recovers both the topicword distributions and the parameters of the Dirichlet prior over the topic mixtures, using only trigram statistics (i.e., third order moments, which may be estimated with documents containing just three words). The method, called Excess Correlation Analysis, is based on a spectral decomposition of loworder moments via two singular value decompositions (SVDs). Moreover, the algorithm is scalable, since the SVDs are carried out only on k × k matrices, where k is the number of latent factors (topics) and is typically much smaller than the dimension of the observation (word) space. 1
Nonnegative approximations of nonnegative tensors
 Jour. Chemometrics
, 2009
"... Abstract. We study the decomposition of a nonnegative tensor into a minimal sum of outer product of nonnegative vectors and the associated parsimonious naïve Bayes probabilistic model. We show that the corresponding approximation problem, which is central to nonnegative parafac, will always have opt ..."
Abstract

Cited by 40 (15 self)
 Add to MetaCart
(Show Context)
Abstract. We study the decomposition of a nonnegative tensor into a minimal sum of outer product of nonnegative vectors and the associated parsimonious naïve Bayes probabilistic model. We show that the corresponding approximation problem, which is central to nonnegative parafac, will always have optimal solutions. The result holds for any choice of norms and, under a mild assumption, even Brègman divergences. hal00410056, version 1 16 Aug 2009 1. Dedication This article is dedicated to the memory of our late colleague Richard Allan Harshman. It is loosely organized around two of Harshman’s best known works — parafac [19] and lsi [13], and answers two questions that he posed. We target this article to a technometrics readership. In Section 4, we discussed a few aspects of nonnegative tensor factorization and Hofmann’s plsi, a variant of the lsi model coproposed by Harshman [13]. In Section 5, we answered a question of Harshman on why the apparently unrelated construction of Bini, Capovani, Lotti, and Romani in [1] should be regarded as the first example of what he called ‘parafac degeneracy ’ [27]. Finally in Section 6, we showed that such parafac degeneracy will not happen for nonnegative approximations of nonnegative tensors, answering another question of his. 2.
Tensor Decompositions, Alternating Least Squares and Other Tales
 JOURNAL OF CHEMOMETRICS
, 2009
"... This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple “bottlenecks”, and on “swamps”. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity ..."
Abstract

Cited by 33 (9 self)
 Add to MetaCart
This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple “bottlenecks”, and on “swamps”. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the ELS enhancement in these algorithms is discussed. Computer simulations feed this discussion.
Adaptive NearOptimal Rank Tensor Approximation for HighDimensional Operator Equations
, 2013
"... ..."
(Show Context)
Generic and typical ranks of multiway arrays
 Linear Algebra Appl
"... HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
(Show Context)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Blind identification of underdetermined mixtures by simultaneous matrix diagonalization
 IEEE TRANSACTIONS ON SIGNAL PROCESSING
, 2008
"... In this paper, we study simultaneous matrix diagonalizationbased techniques for the estimation of the mixing matrix in underdetermined independent component analysis (ICA). This includes a generalization to underdetermined mixtures of the wellknown SOBI algorithm. The problem is reformulated in t ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
In this paper, we study simultaneous matrix diagonalizationbased techniques for the estimation of the mixing matrix in underdetermined independent component analysis (ICA). This includes a generalization to underdetermined mixtures of the wellknown SOBI algorithm. The problem is reformulated in terms of the parallel factor decomposition (PARAFAC) of a higherorder tensor. We present conditions under which the mixing matrix is unique and discuss several algorithms for its computation.