Results 1  10
of
1,539
The structure and function of complex networks
 SIAM REVIEW
, 2003
"... Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, ..."
Abstract

Cited by 2578 (7 self)
 Add to MetaCart
(Show Context)
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the smallworld effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Books in graphs
, 2008
"... A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) ..."
Abstract

Cited by 2380 (22 self)
 Add to MetaCart
A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) n 2 with 0 < α < 17 −3 (), and G has no book of size at least graph G1 of order at least
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such
Flocking for MultiAgent Dynamic Systems: Algorithms and Theory
, 2006
"... In this paper, we present a theoretical framework for design and analysis of distributed flocking algorithms. Two cases of flocking in freespace and presence of multiple obstacles are considered. We present three flocking algorithms: two for freeflocking and one for constrained flocking. A compre ..."
Abstract

Cited by 412 (2 self)
 Add to MetaCart
In this paper, we present a theoretical framework for design and analysis of distributed flocking algorithms. Two cases of flocking in freespace and presence of multiple obstacles are considered. We present three flocking algorithms: two for freeflocking and one for constrained flocking. A comprehensive analysis of the first two algorithms is provided. We demonstrate the first algorithm embodies all three rules of Reynolds. This is a formal approach to extraction of interaction rules that lead to the emergence of collective behavior. We show that the first algorithm generically leads to regular fragmentation, whereas the second and third algorithms both lead to flocking. A systematic method is provided for construction of cost functions (or collective potentials) for flocking. These collective potentials penalize deviation from a class of latticeshape objects called αlattices. We use a multispecies framework for construction of collective potentials that consist of flockmembers, or αagents, and virtual agents associated with αagents called β and γagents. We show that migration of flocks can be performed using a peertopeer network of agents, i.e. “flocks need no leaders.” A “universal” definition of flocking for particle systems with similarities to Lyapunov stability is given. Several simulation results are provided that demonstrate performing 2D and 3D flocking, split/rejoin maneuver, and squeezing maneuver for hundreds of agents using the proposed algorithms.
Probabilistic Approximation of Metric Spaces and its Algorithmic Applications
 In 37th Annual Symposium on Foundations of Computer Science
, 1996
"... The goal of approximating metric spaces by more simple metric spaces has led to the notion of graph spanners [PU89, PS89] and to lowdistortion embeddings in lowdimensional spaces [LLR94], having many algorithmic applications. This paper provides a novel technique for the analysis of randomized ..."
Abstract

Cited by 361 (33 self)
 Add to MetaCart
The goal of approximating metric spaces by more simple metric spaces has led to the notion of graph spanners [PU89, PS89] and to lowdistortion embeddings in lowdimensional spaces [LLR94], having many algorithmic applications. This paper provides a novel technique for the analysis of randomized algorithms for optimization problems on metric spaces, by relating the randomized performance ratio for any metric space to the randomized performance ratio for a set of "simple" metric spaces. We define a notion of a set of metric spaces that probabilisticallyapproximates another metric space. We prove that any metric space can be probabilisticallyapproximated by hierarchically wellseparated trees (HST) with a polylogarithmic distortion. These metric spaces are "simple" as being: (1) tree metrics. (2) natural for applying a divideandconquer algorithmic approach. The technique presented is of particular interest in the context of online computation. A large number of online al...
On the Minimum Node Degree and Connectivity of a Wireless Multihop Network
 ACM MobiHoc
, 2002
"... This paper investigates two fundamental characteristics of a wireless multihop network: its minimum node degree and its k–connectivity. Both topology attributes depend on the spatial distribution of the nodes and their transmission range. Using typical modeling assumptions — a random uniform distri ..."
Abstract

Cited by 321 (4 self)
 Add to MetaCart
This paper investigates two fundamental characteristics of a wireless multihop network: its minimum node degree and its k–connectivity. Both topology attributes depend on the spatial distribution of the nodes and their transmission range. Using typical modeling assumptions — a random uniform distribution of the nodes and a simple link model — we derive an analytical expression that enables the determination of the required range r0 that creates, for a given node density ρ, an almost surely k–connected network. Equivalently, if the maximum r0 of the nodes is given, we can find out how many nodes are needed to cover a certain area with a k–connected network. We also investigate these questions by various simulations and thereby verify our analytical expressions. Finally, the impact of mobility is discussed. The results of this paper are of practical value for researchers in this area, e.g., if they set the parameters in a network–level simulation of a mobile ad hoc network or if they design a wireless sensor network. Categories and Subject Descriptors C.2 [Computercommunication networks]: Network architecture and design—wireless communication, network communications, network topology; G.2.2 [Discrete mathematics]: Graph theory; F.2.2 [Probability and statistics]: Stochastic processes
Comparing community structure identification
 Journal of Statistical Mechanics: Theory and Experiment
, 2005
"... ..."
(Show Context)
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 279 (10 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs. 1
Szemerédi's Regularity Lemma and Its Applications in Graph Theory
, 1996
"... Szemerédi's Regularity Lemma is an important tool in discrete mathematics. It says that, in some sense, all graphs can be approximated by randomlooking graphs. Therefore the lemma helps in proving theorems for arbitrary graphs whenever the corresponding result is easy for random graphs. Recent ..."
Abstract

Cited by 262 (3 self)
 Add to MetaCart
Szemerédi's Regularity Lemma is an important tool in discrete mathematics. It says that, in some sense, all graphs can be approximated by randomlooking graphs. Therefore the lemma helps in proving theorems for arbitrary graphs whenever the corresponding result is easy for random graphs. Recently quite a few new results were obtained by using the Regularity Lemma, and also some new variants and generalizations appeared. In this survey we describe some typical applications and some generalizations.