Results 1 - 10
of
539
2006, ‘A 20th century acceleration in global sea-level rise
- Geophysical Research Letters
"... [1] Multi-century sea-level records and climate models indicate an acceleration of sea-level rise, but no 20th century acceleration has previously been detected. A reconstruction of global sea level using tide-gauge data from 1950 to 2000 indicates a larger rate of rise after 1993 and other periods ..."
Abstract
-
Cited by 196 (4 self)
- Add to MetaCart
[1] Multi-century sea-level records and climate models indicate an acceleration of sea-level rise, but no 20th century acceleration has previously been detected. A reconstruction of global sea level using tide-gauge data from 1950 to 2000 indicates a larger rate of rise after 1993 and other periods of rapid sea-level rise but no significant acceleration over this period. Here, we extend the reconstruction of global mean sea level back to 1870 and find a sea-level rise from January 1870 to December 2004 of 195 mm, a 20th century rate of sea-level rise of 1.7 ± 0.3 mm yr 1 and a significant acceleration of sea-level rise of 0.013 ± 0.006 mm yr 2. This acceleration is an important confirmation of climate change simulations which show an acceleration not previously observed. If this acceleration
Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006
- J. Climate
, 2008
"... Observations of sea surface and land–near-surface merged temperature anomalies are used to monitor climate variations and to evaluate climate simulations; therefore, it is important to make analyses of these data as accurate as possible. Analysis uncertainty occurs because of data errors and incompl ..."
Abstract
-
Cited by 163 (1 self)
- Add to MetaCart
Observations of sea surface and land–near-surface merged temperature anomalies are used to monitor climate variations and to evaluate climate simulations; therefore, it is important to make analyses of these data as accurate as possible. Analysis uncertainty occurs because of data errors and incomplete sampling over the historical period. This manuscript documents recent improvements in NOAA’s merged global surface temperature anomaly analysis, monthly, in spatial 5 ° grid boxes. These improvements allow better analysis of temperatures throughout the record, with the greatest improvements in the late nineteenth century and since 1985. Improvements in the late nineteenth century are due to improved tuning of the analysis methods. Beginning in 1985, improvements are due to the inclusion of bias-adjusted satellite data. The old analysis (version 2) was documented in 2005, and this improved analysis is called version 3. 1.
A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks.
- J. Climate,
, 2007
"... ABSTRACT The simulation of major midwinter stratospheric sudden warmings (SSWs) in six stratosphere-resolving general circulation models (GCMs) is examined. The GCMs are compared to a new climatology of SSWs, based on the dynamical characteristics of the events. First, the number, type, and tempora ..."
Abstract
-
Cited by 63 (4 self)
- Add to MetaCart
(Show Context)
ABSTRACT The simulation of major midwinter stratospheric sudden warmings (SSWs) in six stratosphere-resolving general circulation models (GCMs) is examined. The GCMs are compared to a new climatology of SSWs, based on the dynamical characteristics of the events. First, the number, type, and temporal distribution of SSW events are evaluated. Most of the models show a lower frequency of SSW events than the climatology, which has a mean frequency of 6.0 SSWs per decade. Statistical tests show that three of the six models produce significantly fewer SSWs than the climatology, between 1.0 and 2.6 SSWs per decade. Second, four process-based diagnostics are calculated for all of the SSW events in each model. It is found that SSWs in the GCMs compare favorably with dynamical benchmarks for SSW established in the first part of the study. These results indicate that GCMs are capable of quite accurately simulating the dynamics required to produce SSWs, but with lower frequency than the climatology. Further dynamical diagnostics hint that, in at least one case, this is due to a lack of meridional heat flux in the lower stratosphere. Even though the SSWs simulated by most GCMs are dynamically realistic when compared to the NCEP-NCAR reanalysis, the reasons for the relative paucity of SSWs in GCMs remains an important and open question.
2006: Trends in global tropical cyclone activity over the past twenty years (1986-2005
- J. Climate
, 2004
"... [1] The recent destructive Atlantic hurricane seasons and several recent publications have sparked debate over whether warming tropical sea surface temperatures (SSTs) are causing more intense, longer-lived tropical cyclones. This paper investigates worldwide tropical cyclone frequency and intensity ..."
Abstract
-
Cited by 59 (2 self)
- Add to MetaCart
[1] The recent destructive Atlantic hurricane seasons and several recent publications have sparked debate over whether warming tropical sea surface temperatures (SSTs) are causing more intense, longer-lived tropical cyclones. This paper investigates worldwide tropical cyclone frequency and intensity to determine trends in activity over the past twenty years during which there has been an approximate 0.2°–0.4°C warming of SSTs. The data indicate a large increasing trend in tropical cyclone intensity and longevity for the North Atlantic basin and a considerable decreasing trend for the Northeast Pacific. All other basins showed small trends, and there has been no significant change in global net tropical cyclone activity. There has been a small increase in global Category 4–5 hurricanes from the period 1986–1995 to the period 1996– 2005. Most of this increase is likely due to improved observational technology. These findings indicate that other important factors govern intensity and frequency of tropical
2006: Precipitation characteristics in eighteen coupled climate models
- J. Climate
"... Monthly and 3-hourly precipitation data from twentieth-century climate simulations by the newest gen-eration of 18 coupled climate system models are analyzed and compared with available observations. The characteristics examined include the mean spatial patterns, intraseasonal-to-interannual and ENS ..."
Abstract
-
Cited by 58 (0 self)
- Add to MetaCart
Monthly and 3-hourly precipitation data from twentieth-century climate simulations by the newest gen-eration of 18 coupled climate system models are analyzed and compared with available observations. The characteristics examined include the mean spatial patterns, intraseasonal-to-interannual and ENSO-related variability, convective versus stratiform precipitation ratio, precipitation frequency and intensity for differ-ent precipitation categories, and diurnal cycle. Although most models reproduce the observed broad pat-terns of precipitation amount and year-to-year variability, models without flux corrections still show an unrealistic double-ITCZ pattern over the tropical Pacific, whereas the flux-corrected models, especially the Meteorological Research Institute (MRI) Coupled Global Climate Model (CGCM; version 2.3.2a), produce realistic rainfall patterns at low latitudes. As in previous generations of coupled models, the rainfall double ITCZs are related to westward expansion of the cold tongue of sea surface temperature (SST) that is observed only over the equatorial eastern Pacific but extends to the central Pacific in the models. The partitioning of the total variance of precipitation among intraseasonal, seasonal, and longer time scales is generally reproduced by the models, except over the western Pacific where the models fail to capture the large intraseasonal variations. Most models produce too much convective (over 95 % of total precipitation)
Global Surface Temperature Change
"... We update the Goddard Institute for Space Studies (GISS) analysis of global surface temperature change, compare alternative analyses, and address questions about perception and reality of global warming. Satellite-observed nightlights are used to identify measurement stations located in extreme dar ..."
Abstract
-
Cited by 58 (3 self)
- Add to MetaCart
We update the Goddard Institute for Space Studies (GISS) analysis of global surface temperature change, compare alternative analyses, and address questions about perception and reality of global warming. Satellite-observed nightlights are used to identify measurement stations located in extreme darkness and adjust temperature trends of urban and peri-urban stations for non-climatic factors, verifying that urban effects on analyzed global change are small. Because the GISS analysis combines available sea surface temperature records with meteorological station measurements, we test alternative choices for the ocean data, showing that global temperature change is sensitive to estimated temperature change in polar regions where observations are limited. We use simple 12-month (and n×12) running means to improve the information content in our temperature graphs. Contrary to a popular misconception, the rate of warming has not declined. Global temperature is rising as fast in the past decade as in the prior two decades, despite year-to-year fluctuations associated with the El Nino-La Nina cycle of tropical ocean temperature. Record high global 12-month running-mean temperature for the period with instrumental data was reached in 2010.
and N.Christidis: Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley centre climate model
- J Hydrometeor
, 2001
"... Meteorological drought in the Hadley Centre global climate model is assessed using the Palmer Drought Severity Index (PDSI), a commonly used drought index. At interannual time scales, for the majority of the land surface, the model captures the observed relationship between the El Niño–Southern Osci ..."
Abstract
-
Cited by 57 (0 self)
- Add to MetaCart
Meteorological drought in the Hadley Centre global climate model is assessed using the Palmer Drought Severity Index (PDSI), a commonly used drought index. At interannual time scales, for the majority of the land surface, the model captures the observed relationship between the El Niño–Southern Oscillation and regions of relative wetness and dryness represented by high and low values of the PDSI respectively. At decadal time scales, on a global basis, the model reproduces the observed drying trend (decreasing PDSI) since 1952. An optimal detection analysis shows that there is a significant influence of anthropogenic emissions of greenhouse gasses and sulphate aerosols in the production of this drying trend. On a regional basis, the specific regions of wetting and drying are not always accurately simulated. In this paper, presentday drought events are defined as continuous time periods where the PDSI is less than the 20th percentile of the PDSI distribution between 1952 and 1998 (i.e., on average 20 % of the land surface is in drought at any one time). Overall, the model predicts slightly less frequent but longer events than are observed. Future projections of drought in the twenty-first century made using the Special Report on Emissions Scenarios (SRES) A2 emission scenario show regions of strong wetting and drying with a net overall global drying trend. For example, the proportion of the land surface in extreme drought is predicted to increase from 1% for the present day to 30 % by the end of the twenty-first century. 1.
2008: Effects of black carbon Aerosols on the Indian monsoon
- J. Climate
"... A six-member ensemble of twentieth-century simulations with changes to only time-evolving global distributions of black carbon aerosols in a global coupled climate model is analyzed to study the effects of black carbon (BC) aerosols on the Indian monsoon. The BC aerosols act to increase lower-tropos ..."
Abstract
-
Cited by 46 (3 self)
- Add to MetaCart
A six-member ensemble of twentieth-century simulations with changes to only time-evolving global distributions of black carbon aerosols in a global coupled climate model is analyzed to study the effects of black carbon (BC) aerosols on the Indian monsoon. The BC aerosols act to increase lower-tropospheric heating over South Asia and reduce the amount of solar radiation reaching the surface during the dry season, as noted in previous studies. The increased meridional tropospheric temperature gradient in the premonsoon months of March–April–May (MAM), particularly between the elevated heat source of the Tibetan Plateau and areas to the south, contributes to enhanced precipitation over India in those months. With the onset of the monsoon, the reduced surface temperatures in the Bay of Bengal, Arabian Sea, and over India that extend to the Himalayas act to reduce monsoon rainfall over India itself, with some small increases over the Tibetan Plateau. Precipitation over China generally decreases due to the BC aerosol effects. There is a weakened latitudinal SST gradient resulting from BC aerosols in the model simulations as seen in the observations, and this is present in the multiple-forcings experiments with the Community Climate System Model, version 3 (CCSM3), which includes natural and anthropogenic forcings (including BC aerosols). The BC aerosols and consequent weakened latitudinal SST gradient in those experiments are associated with increased precipitation during MAM in northern India and over the Tibetan Plateau, with
2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM
- J. Climate
"... A global atmospheric model with roughly 50-km horizontal grid spacing is used to simulate the interannual variability of tropical cyclones using observed sea surface temperatures (SSTs) as the lower boundary condition. The model’s convective parameterization is based on a closure for shallow convect ..."
Abstract
-
Cited by 45 (23 self)
- Add to MetaCart
A global atmospheric model with roughly 50-km horizontal grid spacing is used to simulate the interannual variability of tropical cyclones using observed sea surface temperatures (SSTs) as the lower boundary condition. The model’s convective parameterization is based on a closure for shallow convection, with much of the deep convection allowed to occur on resolved scales. Four realizations of the period 1981–2005 are generated. The correlation of yearly Atlantic hurricane counts with observations is greater than 0.8 when the model is averaged over the four realizations, supporting the view that the random part of this annual Atlantic hurricane frequency (the part not predictable given the SSTs) is relatively small (,2 hurricanes per year). Correlations with observations are lower in the east, west, and South Pacific (roughly 0.6, 0.5, and 0.3, respectively) and insignificant in the Indian Ocean. The model trends in Northern Hemisphere basin-wide frequency are consistent with the observed trends in the International Best Track Archive for Climate Stewardship (IBTrACS) database. The model generates an upward trend of hurricane frequency in the Atlantic and downward trends in the east and west Pacific over this time frame. The model produces a negative trend in the Southern Hemisphere that is larger than that in the IBTrACS. The same model is used to simulate the response to the SST anomalies generated by coupled models in the
2011), Stratospheric ozone depletion: The main driver of 20th century atmospheric circulation changes in the Southern Hemisphere
- J. Clim
"... The importance of stratospheric ozone depletion on the atmospheric circulation of the troposphere is studied with an atmospheric general circulation model, the Community Atmospheric Model, version 3 (CAM3), for the second half of the twentieth century. In particular, the relative importance of ozone ..."
Abstract
-
Cited by 44 (8 self)
- Add to MetaCart
(Show Context)
The importance of stratospheric ozone depletion on the atmospheric circulation of the troposphere is studied with an atmospheric general circulation model, the Community Atmospheric Model, version 3 (CAM3), for the second half of the twentieth century. In particular, the relative importance of ozone depletion is contrasted with that of increased greenhouse gases and accompanying sea surface temperature changes. By specifying ozone and greenhouse gas forcings independently, and performing long, time-slice integrations, it is shown that the impacts of ozone depletion are roughly 2–3 times larger than those associated with increased greenhouse gases, for the Southern Hemisphere tropospheric summer circulation. The formation of the ozone hole is shown to affect not only the polar tropopause and the latitudinal position of the midlatitude jet; it extends to the entire hemisphere, resulting in a broadening of the Hadley cell and a poleward extension of the subtropical dry zones. The CAM3 results are compared to and found to be in excellent agreement with those of the multimodel means of the recent Coupled Model Intercomparison Project (CMIP3) and Chemistry–Climate Model Validation (CCMVal2) simulations. This study, therefore, strongly suggests that most Southern Hemisphere tropospheric circulation changes, in austral summer over the second half of the twentieth century, have been caused by polar stratospheric ozone depletion. 1.