Results 1  10
of
381
Nearoptimal hashing algorithms for approximate nearest neighbor in high dimensions
, 2008
"... In this article, we give an overview of efficient algorithms for the approximate and exact nearest neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given a new query object, one can quickly return the dataset object that is most similar to the query. The ..."
Abstract

Cited by 443 (7 self)
 Add to MetaCart
In this article, we give an overview of efficient algorithms for the approximate and exact nearest neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given a new query object, one can quickly return the dataset object that is most similar to the query. The problem is of significant interest in a wide variety of areas.
Scalable Network Distance Browsing in Spatial Databases
, 2008
"... An algorithm is presented for finding the k nearest neighbors in a spatial network in a bestfirst manner using network distance. The algorithm is based on precomputing the shortest paths between all possible vertices in the network and then making use of an encoding that takes advantage of the fact ..."
Abstract

Cited by 80 (8 self)
 Add to MetaCart
(Show Context)
An algorithm is presented for finding the k nearest neighbors in a spatial network in a bestfirst manner using network distance. The algorithm is based on precomputing the shortest paths between all possible vertices in the network and then making use of an encoding that takes advantage of the fact that the shortest paths from vertex u to all of the remaining vertices can be decomposed into subsets based on the first edges on the shortest paths to them from u. Thus, in the worst case, the amount of work depends on the number of objects that are examined and the number of links on the shortest paths to them from q, rather than depending on the number of vertices in the network. The amount of storage required to keep track of the subsets is reduced by taking advantage of their spatial coherence which is captured by the aid of a shortest path quadtree. In particular, experiments on a number of large road networks as
Spatial Join Techniques
"... A variety of techniques for performing a spatial join are reviewed. Instead of just summarizing the literature and presenting each technique in its entirety, distinct components of the different techniques are described and each is decomposed into an overall framework for performing a spatial join. ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
A variety of techniques for performing a spatial join are reviewed. Instead of just summarizing the literature and presenting each technique in its entirety, distinct components of the different techniques are described and each is decomposed into an overall framework for performing a spatial join. A typical spatial join technique consists of the following components: partitioning the data, performing internalmemory spatial joins on subsets of the data, and checking if the full polygons intersect. Each technique is decomposed into these components and each component addressed in a separate section so as to compare and contrast similar aspects of each technique. The goal of this survey is to describe the algorithms within each component in detail, comparing and contrasting competing methods, thereby enabling further analysis and experimentation with each component and allowing the best algorithms for a particular situation to be built piecemeal, or, even better, enabling an optimizer to choose which algorithms to use. Categories and Subject Descriptors: H.2.4 [Database Management]: Systemting each technique in its entirety, distinct components of the different techniques are described and each is decomposed into an overall framework for performing a spatial join. A typical spatial join technique consists of the following components: partitioning t
2000
he data, performing internalmemory spatial joins on subsets of the data, and checking if the full polygons intersect. Each technique is decomposed into these components and each component addressed in a separate section so as to compare and contrast similar aspects of each technique. The goal of this survey is to describe the algorithms within each component in detail, comparing and contrasting competing methods, thereby enabling further analysis and experimentation with each component and allowing the best algorithms for a particular situation to be built piecemeal, or, even better, enabling an optimizer to choose which algorithms to use. Categories and Subject Descriptors: H.2.4 [Database Management]: System0