Results 1  10
of
379
A Survey of Robot Learning from Demonstration
"... We present a comprehensive survey of robot Learning from Demonstration (LfD), a technique that develops policies from example state to action mappings. We introduce the LfD design choices in terms of demonstrator, problem space, policy derivation and performance, and contribute the foundations for a ..."
Abstract

Cited by 281 (19 self)
 Add to MetaCart
(Show Context)
We present a comprehensive survey of robot Learning from Demonstration (LfD), a technique that develops policies from example state to action mappings. We introduce the LfD design choices in terms of demonstrator, problem space, policy derivation and performance, and contribute the foundations for a structure in which to categorize LfD research. Specifically, we analyze and categorize the multiple ways in which examples are gathered, ranging from teleoperation to imitation, as well as the various techniques for policy derivation, including matching functions, dynamics models and plans. To conclude we discuss LfD limitations and related promising areas for future research.
Maximum margin planning
 IN PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING (ICML’06
, 2006
"... Imitation learning of sequential, goaldirected behavior by standard supervised techniques is often difficult. We frame learning such behaviors as a maximum margin structured prediction problem over a space of policies. In this approach, we learn mappings from features to cost so an optimal policy in ..."
Abstract

Cited by 145 (28 self)
 Add to MetaCart
Imitation learning of sequential, goaldirected behavior by standard supervised techniques is often difficult. We frame learning such behaviors as a maximum margin structured prediction problem over a space of policies. In this approach, we learn mappings from features to cost so an optimal policy in an MDP with these cost mimics the expert’s behavior. Further, we demonstrate a simple, provably efficient approach to structured maximum margin learning, based on the subgradient method, that leverages existing fast algorithms for inference. Although the technique is general, it is particularly relevant in problems where A * and dynamic programming approaches make learning policies tractable in problems beyond the limitations of a QP formulation. We demonstrate our approach applied to route planning for outdoor mobile robots, where the behavior a designer wishes a planner to execute is often clear, while specifying cost functions that engender this behavior is a much more difficult task.
An application of reinforcement learning to aerobatic helicopter flight
 In Advances in Neural Information Processing Systems 19
, 2007
"... Autonomous helicopter flight is widely regarded to be a highly challenging control problem. This paper presents the first successful autonomous completion on a real RC helicopter of the following four aerobatic maneuvers: forward flip and sideways roll at low speed, tailin funnel, and nosein funne ..."
Abstract

Cited by 129 (10 self)
 Add to MetaCart
(Show Context)
Autonomous helicopter flight is widely regarded to be a highly challenging control problem. This paper presents the first successful autonomous completion on a real RC helicopter of the following four aerobatic maneuvers: forward flip and sideways roll at low speed, tailin funnel, and nosein funnel. Our experimental results significantly extend the state of the art in autonomous helicopter flight. We used the following approach: First we had a pilot fly the helicopter to help us find a helicopter dynamics model and a reward (cost) function. Then we used a reinforcement learning (optimal control) algorithm to find a controller that is optimized for the resulting model and reward function. More specifically, we used differential dynamic programming (DDP), an extension of the linear quadratic regulator (LQR). 1
Maximum entropy inverse reinforcement learning
 In Proc. AAAI
, 2008
"... Recent research has shown the benefit of framing problems of imitation learning as solutions to Markov Decision Problems. This approach reduces learning to the problem of recovering a utility function that makes the behavior induced by a nearoptimal policy closely mimic demonstrated behavior. In th ..."
Abstract

Cited by 112 (22 self)
 Add to MetaCart
(Show Context)
Recent research has shown the benefit of framing problems of imitation learning as solutions to Markov Decision Problems. This approach reduces learning to the problem of recovering a utility function that makes the behavior induced by a nearoptimal policy closely mimic demonstrated behavior. In this work, we develop a probabilistic approach based on the principle of maximum entropy. Our approach provides a welldefined, globally normalized distribution over decision sequences, while providing the same performance guarantees as existing methods. We develop our technique in the context of modeling realworld navigation and driving behaviors where collected data is inherently noisy and imperfect. Our probabilistic approach enables modeling of route preferences as well as a powerful new approach to inferring destinations and routes based on partial trajectories.
Exploration and apprenticeship learning in reinforcement learning
 In ICML
, 2005
"... We consider reinforcement learning in systems with unknown dynamics. Algorithms such as E3 (Kearns and Singh, 2002) learn nearoptimal policies by using “exploration policies ” to drive the system towards poorly modeled states, so as to encourage exploration. But this makes these algorithms impracti ..."
Abstract

Cited by 102 (3 self)
 Add to MetaCart
(Show Context)
We consider reinforcement learning in systems with unknown dynamics. Algorithms such as E3 (Kearns and Singh, 2002) learn nearoptimal policies by using “exploration policies ” to drive the system towards poorly modeled states, so as to encourage exploration. But this makes these algorithms impractical for many systems; for example, on an autonomous helicopter, overly aggressive exploration may well result in a crash. In this paper, we consider the apprenticeship learning setting in which a teacher demonstration of the task is available. We show that, given the initial demonstration, no explicit exploration is necessary, and we can attain nearoptimal performance (compared to the teacher) simply by repeatedly executing “exploitation policies ” that try to maximize rewards. In finitestate MDPs, our algorithm scales polynomially in the number of states; in continuousstate linear dynamical systems, it scales polynomially in the dimension of the state. These results are proved using a martingale construction over relative losses. 1.
Bayesian inverse reinforcement learning
 in 20th Int. Joint Conf. Artificial Intelligence
, 2007
"... Inverse Reinforcement Learning (IRL) is the problem of learning the reward function underlying a Markov Decision Process given the dynamics of the system and the behaviour of an expert. IRL is motivated by situations where knowledge of the rewards is a goal by itself (as in preference elicitation) a ..."
Abstract

Cited by 86 (0 self)
 Add to MetaCart
Inverse Reinforcement Learning (IRL) is the problem of learning the reward function underlying a Markov Decision Process given the dynamics of the system and the behaviour of an expert. IRL is motivated by situations where knowledge of the rewards is a goal by itself (as in preference elicitation) and by the task of apprenticeship learning (learning policies from an expert). In this paper we show how to combine prior knowledge and evidence from the expert’s actions to derive a probability distribution over the space of reward functions. We present efficient algorithms that find solutions for the reward learning and apprenticeship learning tasks that generalize well over these distributions. Experimental results show strong improvement for our methods over previous heuristicbased approaches. 1
M.: Interactive policy learning through confidencebased autonomy
 J. Artificial Intelligence Research
, 2009
"... We present ConfidenceBased Autonomy (CBA), an interactive algorithm for policy learning from demonstration. The CBA algorithm consists of two components which take advantage of the complementary abilities of humans and computer agents. The first component, Confident Execution, enables the agent to ..."
Abstract

Cited by 85 (15 self)
 Add to MetaCart
(Show Context)
We present ConfidenceBased Autonomy (CBA), an interactive algorithm for policy learning from demonstration. The CBA algorithm consists of two components which take advantage of the complementary abilities of humans and computer agents. The first component, Confident Execution, enables the agent to identify states in which demonstration is required, to request a demonstration from the human teacher and to learn a policy based on the acquired data. The algorithm selects demonstrations based on a measure of action selection confidence, and our results show that using Confident Execution the agent requires fewer demonstrations to learn the policy than when demonstrations are selected by a human teacher. The second algorithmic component, Corrective Demonstration, enables the teacher to correct any mistakes made by the agent through additional demonstrations in order to improve the policy and future task performance. CBA and its individual components are compared and evaluated in a complex simulated driving domain. The complete CBA algorithm results in the best overall learning performance, successfully reproducing the behavior of the teacher while balancing the tradeoff between number of demonstrations and number of incorrect actions during learning. 1.
Learning for Control from Multiple Demonstrations
"... We consider the problem of learning to follow a desired trajectory when given a small number of demonstrations from a suboptimal expert. We present an algorithm that (i) extracts the—initially unknown—desired trajectory from the suboptimal expert’s demonstrations and (ii) learns a local model suit ..."
Abstract

Cited by 72 (9 self)
 Add to MetaCart
We consider the problem of learning to follow a desired trajectory when given a small number of demonstrations from a suboptimal expert. We present an algorithm that (i) extracts the—initially unknown—desired trajectory from the suboptimal expert’s demonstrations and (ii) learns a local model suitable for control along the learned trajectory. We apply our algorithm to the problem of autonomous helicopter flight. In all cases, the autonomous helicopter’s performance exceeds that of our expert helicopter pilot’s demonstrations. Even stronger, our results significantly extend the stateoftheart in autonomous helicopter aerobatics. In particular, our results include the first autonomous tictocs, loops and hurricane, vastly superior performance on previously performed aerobatic maneuvers (such as inplace flips and rolls), and a complete airshow, which requires autonomous transitions between these and various other maneuvers. 1.
NoRegret Reductions for Imitation Learning and Structured Prediction
 In AISTATS
, 2011
"... Sequential prediction problems such as imitation learning, where future observations depend on previous predictions (actions), violate the common i.i.d. assumptions made in statistical learning. This leads to poor performance in theory and often in practice. Some recent approaches (Daumé III et al., ..."
Abstract

Cited by 67 (13 self)
 Add to MetaCart
(Show Context)
Sequential prediction problems such as imitation learning, where future observations depend on previous predictions (actions), violate the common i.i.d. assumptions made in statistical learning. This leads to poor performance in theory and often in practice. Some recent approaches (Daumé III et al., 2009; Ross and Bagnell, 2010) provide stronger guarantees in this setting, but remain somewhat unsatisfactory as they train either nonstationary or stochastic policies and require a large number of iterations. In this paper, we propose a new iterative algorithm, which trains a stationary deterministic policy, that can be seen as a no regret algorithm in an online learning setting. We show that any such no regret algorithm, combined with additional reduction assumptions, must find a policy with good performance under the distribution of observations it induces in such sequential settings. We demonstrate that this new approach outperforms previous approaches on two challenging imitation learning problems and a benchmark sequence labeling problem. 1
Autonomous helicopter aerobatics through apprenticeship learning
 International Journal of Robotics Research
"... Autonomous helicopter flight is widely regarded to be a highly challenging control problem. Despite this fact, human experts can reliably fly helicopters through a wide range of maneuvers, including aerobatic maneuvers at the edge of the helicopter’s capabilities. We present apprenticeship learning ..."
Abstract

Cited by 64 (5 self)
 Add to MetaCart
Autonomous helicopter flight is widely regarded to be a highly challenging control problem. Despite this fact, human experts can reliably fly helicopters through a wide range of maneuvers, including aerobatic maneuvers at the edge of the helicopter’s capabilities. We present apprenticeship learning algorithms, which leverage expert demonstrations to efficiently learn good controllers for tasks being demonstrated by an expert. These apprenticeship learning algorithms have enabled us to significantly extend the state of the art in autonomous helicopter aerobatics. Our experimental results include the first autonomous execution of a wide range of maneuvers, including but not limited to inplace flips, inplace rolls, loops and hurricanes, and even autorotation landings, chaos and tictocs, which only exceptional human pilots can perform. Our results also include complete airshows, which require autonomous transitions between many of these maneuvers. Our controllers perform as well as, and often even better than, our expert pilot.