Results 1  10
of
258
Nonconventional ergodic averages and nilmanifolds
"... Abstract. We study the L2convergence of two types of ergodic averages. The first is the average of a product of functions evaluated at return times along arithmetic progressions, such as the expressions appearing in Furstenberg’s proof of Szemerédi’s Theorem. The second average is taken along cube ..."
Abstract

Cited by 148 (16 self)
 Add to MetaCart
Abstract. We study the L2convergence of two types of ergodic averages. The first is the average of a product of functions evaluated at return times along arithmetic progressions, such as the expressions appearing in Furstenberg’s proof of Szemerédi’s Theorem. The second average is taken along cubes whose sizes tend to +∞. For each average, we show that it is sufficient to prove the convergence for special systems, the characteristic factors. We build these factors in a general way, independent of the type of the average. To each of these factors we associate a natural group of transformations and give them the structure of a nilmanifold. From the second convergence result we derive a combinatorial interpretation for the arithmetic structure inside a set of integers of positive upper density. 1.
UNIVERSAL CHARACTERISTIC FACTORS AND FURSTENBERG AVERAGES
, 2004
"... Let X = (X 0, B, µ, T) be an ergodic probability measure preserving system. For a natural number k we consider the averages N ∑ k ∏ 1 fj(T ..."
Abstract

Cited by 91 (6 self)
 Add to MetaCart
Let X = (X 0, B, µ, T) be an ergodic probability measure preserving system. For a natural number k we consider the averages N ∑ k ∏ 1 fj(T
A variant of the hypergraph removal lemma
, 2006
"... Abstract. Recent work of Gowers [10] and Nagle, Rödl, Schacht, and Skokan [15], [19], [20] has established a hypergraph removal lemma, which in turn implies some results of Szemerédi [26] and FurstenbergKatznelson [7] concerning onedimensional and multidimensional arithmetic progressions respecti ..."
Abstract

Cited by 75 (7 self)
 Add to MetaCart
(Show Context)
Abstract. Recent work of Gowers [10] and Nagle, Rödl, Schacht, and Skokan [15], [19], [20] has established a hypergraph removal lemma, which in turn implies some results of Szemerédi [26] and FurstenbergKatznelson [7] concerning onedimensional and multidimensional arithmetic progressions respectively. In this paper we shall give a selfcontained proof of this hypergraph removal lemma. In fact we prove a slight strengthening of the result, which we will use in a subsequent paper [29] to establish (among other things) infinitely many constellations of a prescribed shape in the Gaussian primes. 1.
Gowers uniformity, influence of variables, and PCPs
 In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
, 2006
"... Gowers [Gow98, Gow01] introduced, for d ≥ 1, the notion of dimensiond uniformity U d (f) of a function f: G → C, where G is a finite abelian group. Roughly speaking, if a function has small Gowers uniformity of dimension d, then it “looks random ” on certain structured subsets of the inputs. We pro ..."
Abstract

Cited by 63 (1 self)
 Add to MetaCart
(Show Context)
Gowers [Gow98, Gow01] introduced, for d ≥ 1, the notion of dimensiond uniformity U d (f) of a function f: G → C, where G is a finite abelian group. Roughly speaking, if a function has small Gowers uniformity of dimension d, then it “looks random ” on certain structured subsets of the inputs. We prove the following inverse theorem. Write G = G1 × · · · × Gn as a product of groups. If a bounded balanced function f: G1 × · · · Gn → C is such that U d (f) ≥ ε, then one of the coordinates of f has influence at least ε/2 O(d). Other inverse theorems are known [Gow98, Gow01, GT05, Sam05], and U 3 is especially well understood, but the properties of functions f with large U d (f), d ≥ 4, are not yet well characterized. The dimensiond Gowers inner product 〈{fS} 〉 U d of a collection {fS} S⊆[d] of functions is a related measure of pseudorandomness. The definition is such that if all the functions fS are equal to the same fixed function f, then 〈{fS} 〉 U d = U d (f). We prove that if fS: G1 × · · · × Gn → C is a collection of bounded functions such that 〈{fS} 〉 U d  ≥ ε and at least one of the fS is balanced, then there is a variable that has influence at least ε 2 /2 O(d) for at least four functions in the collection. Finally, we relate the acceptance probability of the “hypergraph longcode test ” proposed by Samorodnitsky and Trevisan to the Gowers inner product of the functions being tested and we deduce the following result: if the Unique Games Conjecture is true, then for every q ≥ 3 there is a PCP characterization of NP where the verifier makes q queries, has almost perfect completeness, and soundness at most 2q/2 q. For infinitely many q, the soundness is (q + 1)/2 q, which might be a tight result. Two applications of this results are that, assuming that the unique games conjecture is true, it is hard to approximate Max kCSP within a factor 2k/2 k ((k + 1)/2 k for infinitely many k), and it is hard to approximate Independent Set in graphs of degree D within a factor (log D) O(1) /D. 1
A quantitative ergodic theory proof of Szemerédi’s theorem
, 2004
"... A famous theorem of Szemerédi asserts that given any density 0 < δ ≤ 1 and any integer k ≥ 3, any set of integers with density δ will contain infinitely many proper arithmetic progressions of length k. For general k there are essentially four known proofs of this fact; Szemerédi’s original combin ..."
Abstract

Cited by 55 (15 self)
 Add to MetaCart
(Show Context)
A famous theorem of Szemerédi asserts that given any density 0 < δ ≤ 1 and any integer k ≥ 3, any set of integers with density δ will contain infinitely many proper arithmetic progressions of length k. For general k there are essentially four known proofs of this fact; Szemerédi’s original combinatorial proof using the Szemerédi regularity lemma and van der Waerden’s theorem, Furstenberg’s proof using ergodic theory, Gowers’ proof using Fourier analysis and the inverse theory of additive combinatorics, and Gowers’ more recent proof using a hypergraph regularity lemma. Of these four, the ergodic theory proof is arguably the shortest, but also the least elementary, requiring in particular the use of transfinite induction (and thus the axiom of choice), decomposing a general ergodic system as the weakly mixing extension of a transfinite tower of compact extensions. Here we present a quantitative, selfcontained version of this ergodic theory proof, and which is “elementary ” in the sense that it does not require the axiom of choice, the use of infinite sets or measures, or the use of the Fourier transform or inverse theorems from additive combinatorics. It also gives explicit (but extremely poor) quantitative bounds.
Product set estimates for noncommutative groups
 COMBINATORICA
, 2006
"... We develop the PlünneckeRuzsa and BalogSzemerédiGowers theory of sum set estimates in the noncommutative setting, with discrete, continuous, and metric entropy formulations of these estimates. We also develop a Freimantype inverse theorem for a special class of 2step nilpotent groups, namely ..."
Abstract

Cited by 55 (9 self)
 Add to MetaCart
(Show Context)
We develop the PlünneckeRuzsa and BalogSzemerédiGowers theory of sum set estimates in the noncommutative setting, with discrete, continuous, and metric entropy formulations of these estimates. We also develop a Freimantype inverse theorem for a special class of 2step nilpotent groups, namely the Heisenberg groups with no 2torsion in their vertical group.
Lowdegree tests at large distances
, 2006
"... We define tests of boolean functions which distinguish between linear (or quadratic)polynomials, and functions which are very far, in an appropriate sense, from these polynomials. The tests have optimal or nearly optimal tradeoffs between soundness and the number of queries. In particular, we show ..."
Abstract

Cited by 48 (2 self)
 Add to MetaCart
(Show Context)
We define tests of boolean functions which distinguish between linear (or quadratic)polynomials, and functions which are very far, in an appropriate sense, from these polynomials. The tests have optimal or nearly optimal tradeoffs between soundness and the number of queries. In particular, we show that functions with small Gowers uniformity norms behave "randomly" with respect to hypergraph linearity tests. A central step in our analysis of quadraticity tests is the proof of an inverse theorem for the third Gowers uniformity norm of boolean functions. The last result has also a coding theory application. It is possible to estimate efficiently the distance from the secondorder ReedMuller code on inputs lying far beyond its listdecoding radius.
The primes contain arbitrarily long polynomial progressions
 ACTA MATH
, 2006
"... We establish the existence of infinitely many polynomial progressions in the primes; more precisely, given any integervalued polynomials P1,..., Pk ∈ Z[m] in one unknown m with P1(0) =... = Pk(0) = 0 and any ε> 0, we show that there are infinitely many integers x, m with 1 ≤ m ≤ x ε such tha ..."
Abstract

Cited by 48 (7 self)
 Add to MetaCart
(Show Context)
We establish the existence of infinitely many polynomial progressions in the primes; more precisely, given any integervalued polynomials P1,..., Pk ∈ Z[m] in one unknown m with P1(0) =... = Pk(0) = 0 and any ε> 0, we show that there are infinitely many integers x, m with 1 ≤ m ≤ x ε such that x+P1(m),..., x+Pk(m) are simultaneously prime. The arguments are based on those in [18], which treated the linear case Pi = (i − 1)m and ε = 1; the main new features are a localization of the shift parameters (and the attendant Gowers norm objects) to both coarse and fine scales, the use of PET induction to linearize the polynomial averaging, and some elementary estimates for the number of points over finite fields in certain algebraic varieties.
On exchangeable random variables and the statistics of large graphs and hypergraphs
, 2008
"... ..."