Results 1  10
of
136
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1189 (15 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 773 (23 self)
 Add to MetaCart
We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illustrate these principles using current architectures and software systems, and by showing how one would implement matrix multiplication. Then, we present direct and iterative algorithms for solving linear systems of equations, linear least squares problems, the symmetric eigenvalue problem, the nonsymmetric eigenvalue problem, and the singular value decomposition. We consider dense, band and sparse matrices.
An UnsymmetricPattern Multifrontal Method for Sparse LU Factorization
 SIAM J. MATRIX ANAL. APPL
, 1994
"... Sparse matrix factorization algorithms for general problems are typically characterized by irregular memory access patterns that limit their performance on parallelvector supercomputers. For symmetric problems, methods such as the multifrontal method avoid indirect addressing in the innermost loops ..."
Abstract

Cited by 153 (26 self)
 Add to MetaCart
Sparse matrix factorization algorithms for general problems are typically characterized by irregular memory access patterns that limit their performance on parallelvector supercomputers. For symmetric problems, methods such as the multifrontal method avoid indirect addressing in the innermost loops by using dense matrix kernels. However, no efficient LU factorization algorithm based primarily on dense matrix kernels exists for matrices whose pattern is very unsymmetric. We address this deficiency and present a new unsymmetricpattern multifrontal method based on dense matrix kernels. As in the classical multifrontal method, advantage is taken of repetitive structure in the matrix by factorizing more than one pivot in each frontal matrix thus enabling the use of Level 2 and Level 3 BLAS. The performance is compared with the classical multifrontal method and other unsymmetric solvers on a CRAY YMP.
Highly scalable parallel algorithms for sparse matrix factorization
 IEEE Transactions on Parallel and Distributed Systems
, 1994
"... In this paper, we describe a scalable parallel algorithm for sparse matrix factorization, analyze their performance and scalability, and present experimental results for up to 1024 processors on a Cray T3D parallel computer. Through our analysis and experimental results, we demonstrate that our algo ..."
Abstract

Cited by 130 (27 self)
 Add to MetaCart
(Show Context)
In this paper, we describe a scalable parallel algorithm for sparse matrix factorization, analyze their performance and scalability, and present experimental results for up to 1024 processors on a Cray T3D parallel computer. Through our analysis and experimental results, we demonstrate that our algorithm substantially improves the state of the art in parallel direct solution of sparse linear systemsâ€”both in terms of scalability and overall performance. It is a well known fact that dense matrix factorization scales well and can be implemented efficiently on parallel computers. In this paper, we present the first algorithm to factor a wide class of sparse matrices (including those arising from two and threedimensional finite element problems) that is asymptotically as scalable as dense matrix factorization algorithms on a variety of parallel architectures. Our algorithm incurs less communication overhead and is more scalable than any previously known parallel formulation of sparse matrix factorization. Although, in this paper, we discuss Cholesky factorization of symmetric positive definite matrices, the algorithms can be adapted for solving sparse linear least squares problems and for Gaussian elimination of diagonally dominant matrices that are almost symmetric in structure. An implementation of our sparse Cholesky factorization algorithm delivers up to 20 GFlops on a Cray T3D for mediumsize structural engineering and linear programming problems. To the best of our knowledge,
Iterative Solution of Linear Systems
 Acta Numerica
, 1992
"... this paper is as follows. In Section 2, we present some background material on general Krylov subspace methods, of which CGtype algorithms are a special case. We recall the outstanding properties of CG and discuss the issue of optimal extensions of CG to nonHermitian matrices. We also review GMRES ..."
Abstract

Cited by 130 (8 self)
 Add to MetaCart
this paper is as follows. In Section 2, we present some background material on general Krylov subspace methods, of which CGtype algorithms are a special case. We recall the outstanding properties of CG and discuss the issue of optimal extensions of CG to nonHermitian matrices. We also review GMRES and related methods, as well as CGlike algorithms for the special case of Hermitian indefinite linear systems. Finally, we briefly discuss the basic idea of preconditioning. In Section 3, we turn to Lanczosbased iterative methods for general nonHermitian linear systems. First, we consider the nonsymmetric Lanczos process, with particular emphasis on the possible breakdowns and potential instabilities in the classical algorithm. Then we describe recent advances in understanding these problems and overcoming them by using lookahead techniques. Moreover, we describe the quasiminimal residual algorithm (QMR) proposed by Freund and Nachtigal (1990), which uses the lookahead Lanczos process to obtain quasioptimal approximate solutions. Next, a survey of transposefree Lanczosbased methods is given. We conclude this section with comments on other related work and some historical remarks. In Section 4, we elaborate on CGNR and CGNE and we point out situations where these approaches are optimal. The general class of Krylov subspace methods also contains parameterdependent algorithms that, unlike CGtype schemes, require explicit information on the spectrum of the coefficient matrix. In Section 5, we discuss recent insights in obtaining appropriate spectral information for parameterdependent Krylov subspace methods. After that, 4 R.W. Freund, G.H. Golub and N.M. Nachtigal
A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering
, 1996
"... ..."
(Show Context)
Analysis of multilevel graph partitioning
, 1995
"... Recently, a number of researchers have investigated a class of algorithms that are based on multilevel graph partitioning that have moderate computational complexity, and provide excellent graph partitions. However, there exists little theoretical analysis that could explain the ability of multileve ..."
Abstract

Cited by 106 (12 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of algorithms that are based on multilevel graph partitioning that have moderate computational complexity, and provide excellent graph partitions. However, there exists little theoretical analysis that could explain the ability of multilevel algorithms to produce good partitions. In this paper we present such an analysis. We show under certain reasonable assumptions that even if no refinement is used in the uncoarsening phase, a good bisection of the coarser graph is worse than a good bisection of the finer graph by at most a small factor. We also show that the size of a good vertexseparator of the coarse graph projected to the finer graph (without performing refinement in the uncoarsening phase) is higher than the size of a good vertexseparator of the finer graph by at most a small factor.
Special Purpose Parallel Computing
 Lectures on Parallel Computation
, 1993
"... A vast amount of work has been done in recent years on the design, analysis, implementation and verification of special purpose parallel computing systems. This paper presents a survey of various aspects of this work. A long, but by no means complete, bibliography is given. 1. Introduction Turing ..."
Abstract

Cited by 82 (6 self)
 Add to MetaCart
A vast amount of work has been done in recent years on the design, analysis, implementation and verification of special purpose parallel computing systems. This paper presents a survey of various aspects of this work. A long, but by no means complete, bibliography is given. 1. Introduction Turing [365] demonstrated that, in principle, a single general purpose sequential machine could be designed which would be capable of efficiently performing any computation which could be performed by a special purpose sequential machine. The importance of this universality result for subsequent practical developments in computing cannot be overstated. It showed that, for a given computational problem, the additional efficiency advantages which could be gained by designing a special purpose sequential machine for that problem would not be great. Around 1944, von Neumann produced a proposal [66, 389] for a general purpose storedprogram sequential computer which captured the fundamental principles of...
Graph Partitioning Algorithms With Applications To Scientific Computing
 Parallel Numerical Algorithms
, 1997
"... Identifying the parallelism in a problem by partitioning its data and tasks among the processors of a parallel computer is a fundamental issue in parallel computing. This problem can be modeled as a graph partitioning problem in which the vertices of a graph are divided into a specified number of su ..."
Abstract

Cited by 50 (0 self)
 Add to MetaCart
Identifying the parallelism in a problem by partitioning its data and tasks among the processors of a parallel computer is a fundamental issue in parallel computing. This problem can be modeled as a graph partitioning problem in which the vertices of a graph are divided into a specified number of subsets such that few edges join two vertices in different subsets. Several new graph partitioning algorithms have been developed in the past few years, and we survey some of this activity. We describe the terminology associated with graph partitioning, the complexity of computing good separators, and graphs that have good separators. We then discuss early algorithms for graph partitioning, followed by three new algorithms based on geometric, algebraic, and multilevel ideas. The algebraic algorithm relies on an eigenvector of a Laplacian matrix associated with the graph to compute the partition. The algebraic algorithm is justified by formulating graph partitioning as a quadratic assignment p...