Results 1  10
of
536
Wrappers for Feature Subset Selection
 AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1569 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a feature subset selection method should consider how the algorithm and the training set interact. We explore the relation between optimal feature subset selection and relevance. Our wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain. We study the strengths and weaknesses of the wrapper approach andshow a series of improved designs. We compare the wrapper approach to induction without feature subset selection and to Relief, a filter approach to feature subset selection. Significant improvement in accuracy is achieved for some datasets for the two families of induction algorithms used: decision trees and NaiveBayes.
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 818 (27 self)
 Add to MetaCart
The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zeroone loss (misclassification rate) even when this assumption is violated by a wide margin. The region of quadraticloss optimality of the Bayesian classifier is in fact a secondorder infinitesimal fraction of the region of zeroone optimality. This implies that the Bayesian classifier has a much greater range of applicability than previously thought. For example, in this article it is shown to be optimal for learning conjunctions and disjunctions, even though they violate the independence assumption. Further, studies in artificial domains show that it will often outperform more powerful classifiers for common training set sizes and numbers of attributes, even if its bias is a priori much less appropriate to the domain. This article’s results also imply that detecting attribute dependence is not necessarily the best way to extend the Bayesian classifier, and this is also verified empirically.
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 796 (20 self)
 Add to MetaCart
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly represent statements about independence. Among these approaches we single out a method we call Tree Augmented Naive Bayes (TAN), which outperforms naive Bayes, yet at the same time maintains the computational simplicity (no search involved) and robustness that characterize naive Bayes. We experimentally tested these approaches, using problems from the University of California at Irvine repository, and compared them to C4.5, naive Bayes, and wrapper methods for feature selection.
Integrating classification and association rule mining
 In Proc of KDD
, 1998
"... Classification rule mining aims to discover a small set of rules in the database that forms an accurate classifier. Association rule mining finds all the rules existing in the database that satisfy some minimum support and minimum confidence constraints. For association rule mining, the target of di ..."
Abstract

Cited by 578 (21 self)
 Add to MetaCart
Classification rule mining aims to discover a small set of rules in the database that forms an accurate classifier. Association rule mining finds all the rules existing in the database that satisfy some minimum support and minimum confidence constraints. For association rule mining, the target of discovery is not predetermined, while for classification rule mining there is one and only one predetermined target. In this paper, we propose to integrate these two mining techniques. The integration is done by focusing on mining a special subset of association rules, called class association rules (CARs). An efficient algorithm is also given for building a classifier based on the set of discovered CARs. Experimental results show that the classifier built this way is, in general, more accurate than that produced by the stateoftheart classification system C4.5. In addition, this integration helps to solve a number of problems that exist in the current classification systems.
The Case Against Accuracy Estimation for Comparing Induction Algorithms
 In Proceedings of the Fifteenth International Conference on Machine Learning
, 1997
"... We analyze critically the use of classification accuracy to compare classifiers on natural data sets, providing a thorough investigation using ROC analysis, standard machine learning algorithms, and standard benchmark data sets. The results raise serious concerns about the use of accuracy for compar ..."
Abstract

Cited by 414 (23 self)
 Add to MetaCart
We analyze critically the use of classification accuracy to compare classifiers on natural data sets, providing a thorough investigation using ROC analysis, standard machine learning algorithms, and standard benchmark data sets. The results raise serious concerns about the use of accuracy for comparing classifiers and drawinto question the conclusions that can be drawn from such studies. In the course of the presentation, we describe and demonstrate what we believe to be the proper use of ROC analysis for comparative studies in machine learning research. We argue that this methodology is preferable both for making practical choices and for drawing scientific conclusions.
Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier
"... The simple Bayesian classifier (SBC) is commonly thought to assume that attributes are independent given the class, but this is apparently contradicted by the surprisingly good performance it exhibits in many domains that contain clear attribute dependences. No explanation for this has been proposed ..."
Abstract

Cited by 361 (8 self)
 Add to MetaCart
The simple Bayesian classifier (SBC) is commonly thought to assume that attributes are independent given the class, but this is apparently contradicted by the surprisingly good performance it exhibits in many domains that contain clear attribute dependences. No explanation for this has been proposed so far. In this paper we show that the SBC does not in fact assume attribute independence, and can be optimal even when this assumption is violated by a wide margin. The key to this finding lies in the distinction between classification and probability estimation: correct classification can be achieved even when the probability estimates used contain large errors. We show that the previouslyassumed region of optimality of the SBC is a secondorder infinitesimal fraction of the actual one. This is followed by the derivation of several necessary and several sufficient conditions for the optimality of the SBC. For example, the SBC is optimal for learning arbitrary conjunctions and disjunctions, even though they violate the independence assumption. The paper also reports empirical evidence of the SBC's competitive performance in domains containing substantial degrees of attribute dependence.
Robust Classification for Imprecise Environments
, 1989
"... In realworld environments it is usually difficult to specify target operating conditions precisely. This uncertainty makes building robust classification systems problematic. We present a method for the comparison of classifier performance that is robust to imprecise class distributions and misclas ..."
Abstract

Cited by 341 (15 self)
 Add to MetaCart
(Show Context)
In realworld environments it is usually difficult to specify target operating conditions precisely. This uncertainty makes building robust classification systems problematic. We present a method for the comparison of classifier performance that is robust to imprecise class distributions and misclassification costs. The ROC convex hull method combines techniques from ROC analysis, decision analysis and computational geometry, and adapts them to the particulars of analyzing learned classifiers. The method is efficient and incremental, minimizes the management of classifier performance data, and allows for clear visual comparisons and sensitivity analyses. We then show that it is possible to build a hybrid classifier that will perform at least as well as the best available classifier for any target conditions. This robust performance extends across a wide variety of comparison frameworks, including the optimization of metrics such as accuracy, expected cost, lift, precision, recall, and ...
Improved Use of Continuous Attributes in C4.5
 Journal of Artificial Intelligence Research
, 1996
"... A reported weakness of C4.5 in domains with continuous attributes is addressed by modifying the formation and evaluation of tests on continuous attributes. An MDLinspired penalty is applied to such tests, eliminating some of them from consideration and altering the relative desirability of all test ..."
Abstract

Cited by 281 (1 self)
 Add to MetaCart
A reported weakness of C4.5 in domains with continuous attributes is addressed by modifying the formation and evaluation of tests on continuous attributes. An MDLinspired penalty is applied to such tests, eliminating some of them from consideration and altering the relative desirability of all tests. Empirical trials show that the modifications lead to smaller decision trees with higher predictive accuracies. Results also confirm that a new version of C4.5 incorporating these changes is superior to recent approaches that use global discretization and that construct small trees with multiinterval splits. 1. Introduction Most empirical learning systems are given a set of preclassified cases, each described by a vector of attribute values, and construct from them a mapping from attribute values to classes. The attributes used to describe cases can be grouped into continuous attributes, whose values are numeric, and discrete attributes with unordered nominal values. For example, the de...
Transforming Data to Satisfy Privacy Constraints
, 2002
"... Data on individuals and entities are being collected widely. These data can contain information that explicitly identifies the individual (e.g., social security number). Data can also contain other kinds of personal information (e.g., date of birth, zip code, gender) that are potentially identifying ..."
Abstract

Cited by 250 (0 self)
 Add to MetaCart
Data on individuals and entities are being collected widely. These data can contain information that explicitly identifies the individual (e.g., social security number). Data can also contain other kinds of personal information (e.g., date of birth, zip code, gender) that are potentially identifying when linked with other available data sets. Data are often shared for business or legal reasons. This paper addresses the important issue of preserving the anonymity of the individuals or entities during the data dissemination process. We explore preserving the anonymity by the use of generalizations and suppressions on the potentially identifying portions of the data. We extend earlier works in this area along various dimensions. First, satisfying privacy constraints is considered in conjunction with the usage for the data being disseminated. This allows us to optimize the process of preserving privacy for the specified usage. In particular, we investigate the privacy transformation in the context of data mining applications like building classification and regression models. Second, our work improves on previous approaches by allowing more flexible generalizations for the data. Lastly, this is combined with a more thorough exploration of the solution space using the genetic algorithm framework. These extensions allow us to transform the data so that they are more useful for their intended purpose while satisfying the privacy constraints.