Results

**1 - 1**of**1**### Fall Term

"... We are continuously challenged by ever increasing problem complexity and the need to develop algorithms that can solve complex problems and solve them within a reasonable amount of time. Modularity is thought to reduce problem complexity by decomposing large problems into smaller and less complex su ..."

Abstract
- Add to MetaCart

(Show Context)
We are continuously challenged by ever increasing problem complexity and the need to develop algorithms that can solve complex problems and solve them within a reasonable amount of time. Modularity is thought to reduce problem complexity by decomposing large problems into smaller and less complex subproblems. In practice, introducing modularity into evolutionary algorithm representations appears to improve search performance; however, how and why modularity improves performance is not well understood. In this thesis, we seek to better understand the effects of modularity on search. In particular, what are the effects of module creation on the search space structure and how do these structural changes affect performance? We define a theoretical and empirical framework to study modularity in evolutionary algorithms. Using this framework, we provide evidence of the following. First, not all types of modularity have an effect on search. We can have highly modular spaces that in essence are equivalent to simpler non-modular spaces. This is the case, because these spaces achieve higher degree of modularity without changing the fundamental structure of the search space. Second, for the cases when modularity actually has an effect on the