Results 1  10
of
67
The Computational Complexity of Hybrid Temporal Logics
 Logic Journal of the IGPL
, 2000
"... In their simplest form, hybrid languages are propositional modal languages which can refer to states. They were introduced by Arthur Prior, the inventor of tense logic, and played an important role in his work: because they make reference to specic times possible, they remove the most serious obstac ..."
Abstract

Cited by 59 (12 self)
 Add to MetaCart
In their simplest form, hybrid languages are propositional modal languages which can refer to states. They were introduced by Arthur Prior, the inventor of tense logic, and played an important role in his work: because they make reference to specic times possible, they remove the most serious obstacle to developing modal approaches to temporal representation and reasoning. However very little is known about the computational complexity of hybrid temporal logics. In this paper we analyze the complexity of the satisability problem of a number of hybrid temporal logics: the basic hybrid language over transitive frames; nominal tense logic over transitive frames, strict total orders, and transitive trees; nominal Until logic; and referential interval logic. We discuss the eects of including nominals, the @ operator, the somewhere modality E, and the dierence operator D. Adding nominals to tense logic leads for several frame{classes to an increase in complexity of the satisability pro...
Termination for hybrid tableaus
 Journal of Logic and Computation
"... Abstract. This article extends and improves work on tableaubased decision methods for hybrid logic by Bolander and Braüner [5]. Their paper gives tableaubased decision procedures for basic hybrid logic (with unary modalities) and the basic logic extended with the global modality. All their proof p ..."
Abstract

Cited by 34 (3 self)
 Add to MetaCart
(Show Context)
Abstract. This article extends and improves work on tableaubased decision methods for hybrid logic by Bolander and Braüner [5]. Their paper gives tableaubased decision procedures for basic hybrid logic (with unary modalities) and the basic logic extended with the global modality. All their proof procedures make use of loopchecks to ensure termination. Here we take a closer look at termination for hybrid tableaus. We cover both types of system used in hybrid logic: prefixed tableaus and internalised tableaus. We first treat prefixed tableaus. We prove a termination result for the basic language (with nary operators) that does not involve loopchecks. We then successively add the global modality and nary inverse modalities, show why various different types of loopcheck are required in these cases, and then reprove termination. Following this we consider internalised tableaus. At first sight, such systems seem to be more complex. However we define a internalised system which terminates without loopchecks. It is simpler than previously known internalised systems (all of which require loopchecks to terminate) and simpler than our prefix systems (no nonlocal side conditions on rules are required).
Logics of Metric Spaces
, 2001
"... This paper investigates the expressive power and computational properties of languages designed for speaking about distances. `Distances' can be induced by difAuthors Addresses: Oliver Kutz, Frank Wolter, Institut fur Informatik, Abteilung intelligente Systeme, Universitat Leipzig, AugustusPla ..."
Abstract

Cited by 34 (25 self)
 Add to MetaCart
This paper investigates the expressive power and computational properties of languages designed for speaking about distances. `Distances' can be induced by difAuthors Addresses: Oliver Kutz, Frank Wolter, Institut fur Informatik, Abteilung intelligente Systeme, Universitat Leipzig, AugustusPlatz 1011, 04109 Leipzig, Germany; Holger Sturm, Fachbereich Philosophie, Universitat Konstanz, 78457 Konstanz, Germany; NobuYuki Suzuki, Department of Mathematics, Faculty of Science, Shizuoka University, Ohya 836, Shizuoka 422 8529, Japan; Michael Zakharyaschev, Department of Computer Science, King's College, Strand, London WC2R 2LS, U.K. Emails: {kutz, wolter}@informatik.unileipzig.de, holger.sturm@unikonstanz.de, smnsuzu@ipz.shizuoka.ac.jp, and mz@dcs.kcl.ac.uk Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee
Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto
 Logic Journal of IGPL
, 2000
"... This paper is about the good side of modal logic, the bad side of modal logic, and how hybrid logic takes the good and xes the bad. In essence, modal logic is a simple formalism for working with relational structures (or multigraphs) . But modal logic has no mechanism for referring to or reasoning ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
This paper is about the good side of modal logic, the bad side of modal logic, and how hybrid logic takes the good and xes the bad. In essence, modal logic is a simple formalism for working with relational structures (or multigraphs) . But modal logic has no mechanism for referring to or reasoning about the individual nodes in such structures, and this lessens its eectiveness as a representation formalism. In their simplest form, hybrid logics are upgraded modal logics in which reference to individual nodes is possible. But hybrid logic is a rather unusual modal upgrade. It pushes one simple idea as far as it will go: represent all information as formulas. This turns out to be the key needed to draw together a surprisingly diverse range of work (for example, feature logic, description logic and labelled deduction) . Moreover, it displays a number of knowledge representation issues in a new light, notably the importance of sorting. Keywords: Labelled deduction, description logic, f...
MODAL LOGICS OF TOPOLOGICAL RELATIONS
 ACCEPTED FOR PUBLICATION IN LOGICAL METHODS IN COMPUTER SCIENCE
, 2006
"... Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham’s modal logic of time intervals based on the Allen relations, we int ..."
Abstract

Cited by 24 (6 self)
 Add to MetaCart
(Show Context)
Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham’s modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the EgenhoferFranzosa (or RCC8) relations between regions in topological spaces such as the real plane. We investigate the expressive power and computational complexity of logics obtained in this way. It turns out that our modal logics have the same expressive power as the twovariable fragment of firstorder logic, but are exponentially less succinct. The complexity ranges from (undecidable and) recursively enumerable to Π 1 1hard, where the recursively enumerable logics are obtained by considering substructures of structures induced by topological spaces. As our undecidability results also capture logics based on the real line, they improve upon undecidability results for interval temporal logics by Halpern and Shoham. We also analyze modal logics based on the five RCC5 relations, with similar results regarding the expressive power, but weaker results regarding the complexity.
Modal Logic, Transition Systems and Processes
, 1994
"... Transition systems can be viewed either as process diagrams or as Kripke structures. The first perspective is that of process theory, the second that of modal logic. This paper shows how various formalisms of modal logic can be brought to bear on processes. Notions of bisimulation can not only be mo ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
Transition systems can be viewed either as process diagrams or as Kripke structures. The first perspective is that of process theory, the second that of modal logic. This paper shows how various formalisms of modal logic can be brought to bear on processes. Notions of bisimulation can not only be motivated by operations on transition systems, but they can also be suggested by investigations of modal formalisms. To show that the equational view of processes from process algebra is closely related to modal logic, we consider various ways of looking at the relation between the calculus of basic process algebra and propositional dynamic logic. More concretely, the paper contains preservation results for various bisimulation notions, a result on the expressive power of propositional dynamic logic, and a definition of bisimulation which is the proper notion of invariance for concurrent propositional dynamic logic. Keywords: modal logic, transition systems, bisimulation, process algebra 1 In...
Spatial Logic and the Complexity of Diagrammatic Reasoning
 MACHINE GRAPHICS AND VISION
, 1997
"... Researchers have sought to explain the observed "efficacy" of diagrammatic reasoning (DR) via the notions of "limited abstraction" and inexpressivity [17, 20]. We argue that application of the concepts of computational complexity to systems of diagrammatic representation is neces ..."
Abstract

Cited by 22 (2 self)
 Add to MetaCart
Researchers have sought to explain the observed "efficacy" of diagrammatic reasoning (DR) via the notions of "limited abstraction" and inexpressivity [17, 20]. We argue that application of the concepts of computational complexity to systems of diagrammatic representation is necessary for the evaluation of precise claims about their efficacy. We show here how to give such an analysis. Centrally, we claim that recent formal analyses of diagrammatic representations (DRs) (eg: [14]) fail to account for the ways in which they employ spatial relations in their representational work. This focus raises some problems for the expressive power of graphical systems, related to the topological and geometrical constraints of the medium. A further idea is that some diagrammatic reasoning may be analysed as a variety of topological inference [15]. In particular, we show how reasoning in some diagrammatic systems is of polynomial complexity, while reasoning in others is NP hard. A simple case study i...
Modal logic and the twovariable fragment
 IN ANNUAL CONF. OF THE EUROPEAN ASSOCIATION FOR COMPUTER SCIENCE LOGIC (CSL’01), LNCS
, 2001
"... We introduce a modal language L which is obtained from standard modal logic by adding the Boolean operators on accessibility relations, the identity relation, and the converse of relations. It is proved that L has the same expressive power as the twovariable fragment F O2 of firstorder logic, bu ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
(Show Context)
We introduce a modal language L which is obtained from standard modal logic by adding the Boolean operators on accessibility relations, the identity relation, and the converse of relations. It is proved that L has the same expressive power as the twovariable fragment F O2 of firstorder logic, but speaks less succinctly about relational structures: if the number of relations is bounded, then Lsatisfiability is ExpTimecomplete but F O2 satisfiability is NExpTimecomplete. We indicate that the relation between L and F O2 provides a general framework for comparing modal and temporal languages with firstorder languages.
Modal Logic: A Semantic Perspective
 ETHICS
, 1988
"... This chapter introduces modal logic as a tool for talking about graphs, or to use more traditional terminology, as a tool for talking about Kripke models and frames. We want the reader to gain an intuitive appreciation of this perspective, and a firm grasp of the key technical ideas (such as bisimul ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
(Show Context)
This chapter introduces modal logic as a tool for talking about graphs, or to use more traditional terminology, as a tool for talking about Kripke models and frames. We want the reader to gain an intuitive appreciation of this perspective, and a firm grasp of the key technical ideas (such as bisimulations) which underly it. We introduce the syntax and semantics of basic modal logic, discuss its expressivity at the level of models, examine its computational properties, and then consider what it can say at the level of frames. We then move beyond the basic modal language, examine the kinds of expressivity offered by a number of richer modal logics, and try to pin down what it is that makes them all ‘modal’. We conclude by discussing an example which brings many of the ideas we discuss into play: games.
Cutfree Display Calculi for Nominal Tense Logics
 Conference on Tableaux Calculi and Related Methods (TABLEAUX
, 1998
"... . We define cutfree display calculi for nominal tense logics extending the minimal nominal tense logic (MNTL) by addition of primitive axioms. To do so, we use a translation of MNTL into the minimal tense logic of inequality (MTL 6= ) which is known to be properly displayable by application of Krac ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
. We define cutfree display calculi for nominal tense logics extending the minimal nominal tense logic (MNTL) by addition of primitive axioms. To do so, we use a translation of MNTL into the minimal tense logic of inequality (MTL 6= ) which is known to be properly displayable by application of Kracht's results. The rules of the display calculus ffiMNTL for MNTL mimic those of the display calculus ffiMTL 6= for MTL 6= . Since ffiMNTL does not satisfy Belnap's condition (C8), we extend Wansing's strong normalisation theorem to get a similar theorem for any extension of ffiMNTL by addition of structural rules satisfying Belnap's conditions (C2)(C7). Finally, we show a weak Sahlqviststyle theorem for extensions of MNTL, and by Kracht's techniques, deduce that these Sahlqvist extensions of ffiMNTL also admit cutfree display calculi. 1 Introduction Background: The addition of names (also called nominals) to modal logics has been investigated recently with different motivations; see...