Results 1  10
of
218
Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ¹ minimization
 PROC. NATL ACAD. SCI. USA 100 2197–202
, 2002
"... Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered ..."
Abstract

Cited by 626 (37 self)
 Add to MetaCart
Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered the special case where D is an overcomplete system consisting of exactly two orthobases, and has shown that, under a condition of mutual incoherence of the two bases, and assuming that S has a sufficiently sparse representation, this representation is unique and can be found by solving a convex optimization problem: specifically, minimizing the ℓ¹ norm of the coefficients γ. In this paper, we obtain parallel results in a more general setting, where the dictionary D can arise from two or several bases, frames, or even less structured systems. We introduce the Spark, ameasure of linear dependence in such a system; it is the size of the smallest linearly dependent subset (dk). We show that, when the signal S has a representation using less than Spark(D)/2 nonzeros, this representation is necessarily unique. We
A multilinear singular value decomposition
 SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc., are ..."
Abstract

Cited by 467 (20 self)
 Add to MetaCart
Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc., are analyzed. We investigate how tensor symmetries affect the decomposition and propose a multilinear generalization of the symmetric eigenvalue decomposition for pairwise symmetric tensors.
Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit
, 2006
"... Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our pr ..."
Abstract

Cited by 278 (23 self)
 Add to MetaCart
Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our proposal, Stagewise Orthogonal Matching Pursuit (StOMP), successively transforms the signal into a negligible residual. Starting with initial residual r0 = y, at the sth stage it forms the ‘matched filter ’ Φ T rs−1, identifies all coordinates with amplitudes exceeding a speciallychosen threshold, solves a leastsquares problem using the selected coordinates, and subtracts the leastsquares fit, producing a new residual. After a fixed number of stages (e.g. 10), it stops. In contrast to Orthogonal Matching Pursuit (OMP), many coefficients can enter the model at each stage in StOMP while only one enters per stage in OMP; and StOMP takes a fixed number of stages (e.g. 10), while OMP can take many (e.g. n). StOMP runs much faster than competing proposals for sparse solutions, such as ℓ1 minimization and OMP, and so is attractive for solving largescale problems. We use phase diagrams to compare algorithm performance. The problem of recovering a ksparse vector x0 from (y, Φ) where Φ is random n × N and y = Φx0 is represented by a point (n/N, k/n)
HighOrder Contrasts for Independent Component Analysis
"... This article considers highorder measures of independence for the independent component analysis problem and discusses the class of Jacobi algorithms for their optimization. Several implementations are discussed. We compare the proposed approaches with gradientbased techniques from the algorithmic ..."
Abstract

Cited by 252 (5 self)
 Add to MetaCart
This article considers highorder measures of independence for the independent component analysis problem and discusses the class of Jacobi algorithms for their optimization. Several implementations are discussed. We compare the proposed approaches with gradientbased techniques from the algorithmic point of view and also on a set of biomedical data.
How often to sample a continuoustime process in the presence of market microstructure noise
 Review of Financial Studies
, 2005
"... In theory, the sum of squares of log returns sampled at high frequency estimates their variance. When market microstructure noise is present but unaccounted for, however, we show that the optimal sampling frequency is finite and derives its closedform expression. But even with optimal sampling, usi ..."
Abstract

Cited by 158 (13 self)
 Add to MetaCart
In theory, the sum of squares of log returns sampled at high frequency estimates their variance. When market microstructure noise is present but unaccounted for, however, we show that the optimal sampling frequency is finite and derives its closedform expression. But even with optimal sampling, using say 5min returns when transactions are recorded every second, a vast amount of data is discarded, in contradiction to basic statistical principles. We demonstrate that modeling the noise and using all the data is a better solution, even if one misspecifies the noise distribution. So the answer is: sample as often as possible. Over the past few years, price data sampled at very high frequency have become increasingly available in the form of the Olsen dataset of currency exchange rates or the TAQ database of NYSE stocks. If such data were not affected by market microstructure noise, the realized volatility of the process (i.e., the average sum of squares of logreturns sampled at high frequency) would estimate the returns ’ variance, as is well known. In fact, sampling as often as possible would theoretically produce in the limit a perfect estimate of that variance. We start by asking whether it remains optimal to sample the price process at very high frequency in the presence of market microstructure noise, consistently with the basic statistical principle that, ceteris paribus, more data are preferred to less. We first show that, if noise is present but unaccounted for, then the optimal sampling frequency is finite, and we We are grateful for comments and suggestions from the editor, Maureen O’Hara, and two anonymous
Logistic Regression in Rare Events Data
, 1999
"... We study rare events data, binary dependent variables with dozens to thousands of times fewer ones (events, such as wars, vetoes, cases of political activism, or epidemiological infections) than zeros (“nonevents”). In many literatures, these variables have proven difficult to explain and predict, a ..."
Abstract

Cited by 152 (4 self)
 Add to MetaCart
We study rare events data, binary dependent variables with dozens to thousands of times fewer ones (events, such as wars, vetoes, cases of political activism, or epidemiological infections) than zeros (“nonevents”). In many literatures, these variables have proven difficult to explain and predict, a problem that seems to have at least two sources. First, popular statistical procedures, such as logistic regression, can sharply underestimate the probability of rare events. We recommend corrections that outperform existing methods and change the estimates of absolute and relative risks by as much as some estimated effects reported in the literature. Second, commonly used data collection strategies are grossly inefficient for rare events data. The fear of collecting data with too few events has led to data collections with huge numbers of observations but relatively few, and poorly measured, explanatory variables, such as in international conflict data with more than a quartermillion dyads, only a few of which are at war. As it turns out, more efficient sampling designs exist for making valid inferences, such as sampling all available events (e.g., wars) and a tiny fraction of nonevents (peace). This enables scholars to save as much as 99 % of their (nonfixed) data collection costs or to collect much more meaningful explanatory
Information Theoretic Approaches to Inference in Moment Condition Models
 Econometrica
, 1998
"... ..."
Closedform likelihood expansions for multivariate diffusions
, 2008
"... This paper provides closedform expansions for the loglikelihood function of multivariate diffusions sampled at discrete time intervals. The coefficients of the expansion are calculated explicitly by exploiting the special structure afforded by the diffusion model. Examples of interest in financial ..."
Abstract

Cited by 110 (3 self)
 Add to MetaCart
(Show Context)
This paper provides closedform expansions for the loglikelihood function of multivariate diffusions sampled at discrete time intervals. The coefficients of the expansion are calculated explicitly by exploiting the special structure afforded by the diffusion model. Examples of interest in financial statistics and Monte Carlo evidence are included, along with the convergence of the expansion to the true likelihood function.
Symmetric tensors and symmetric tensor rank
 Scientific Computing and Computational Mathematics (SCCM
, 2006
"... Abstract. A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank1 orderk tensor is the outer product of k nonzero vectors. An ..."
Abstract

Cited by 101 (22 self)
 Add to MetaCart
(Show Context)
Abstract. A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank1 orderk tensor is the outer product of k nonzero vectors. Any symmetric tensor can be decomposed into a linear combination of rank1 tensors, each of them being symmetric or not. The rank of a symmetric tensor is the minimal number of rank1 tensors that is necessary to reconstruct it. The symmetric rank is obtained when the constituting rank1 tensors are imposed to be themselves symmetric. It is shown that rank and symmetric rank are equal in a number of cases, and that they always exist in an algebraically closed field. We will discuss the notion of the generic symmetric rank, which, due to the work of Alexander and Hirschowitz, is now known for any values of dimension and order. We will also show that the set of symmetric tensors of symmetric rank at most r is not closed, unless r = 1. Key words. Tensors, multiway arrays, outer product decomposition, symmetric outer product decomposition, candecomp, parafac, tensor rank, symmetric rank, symmetric tensor rank, generic symmetric rank, maximal symmetric rank, quantics AMS subject classifications. 15A03, 15A21, 15A72, 15A69, 15A18 1. Introduction. We