Results 1  10
of
192
Static analysis yields efficient exact integer arithmetic for computational geometry.
 ACM Trans. Graph.,
, 1996
"... ..."
(Show Context)
Implicitization using Moving Curves and Surfaces
, 1995
"... This paper presents a radically new approach to the century old problem of computing the implicit equation of a parametric surface. For surfaces without base points, the new method expresses the implicit equation in a determinant which is one fourth the size of the conventional expression based on D ..."
Abstract

Cited by 58 (6 self)
 Add to MetaCart
This paper presents a radically new approach to the century old problem of computing the implicit equation of a parametric surface. For surfaces without base points, the new method expresses the implicit equation in a determinant which is one fourth the size of the conventional expression based on Dixon's resultant. If base points do exist, previous implicitization methods either fail or become much more complicated, while the new method actually simplifies.
Using Generic Programming for Designing a Data Structure for Polyhedral Surfaces
 Comput. Geom. Theory Appl
, 1999
"... Appeared in Computational Geometry  Theory and Applications 13, 1999, 6590. Software design solutions are presented for combinatorial data structures, such as polyhedral surfaces and planar maps, tailored for program libraries in computational geometry. Design issues considered are flexibility, ..."
Abstract

Cited by 48 (4 self)
 Add to MetaCart
(Show Context)
Appeared in Computational Geometry  Theory and Applications 13, 1999, 6590. Software design solutions are presented for combinatorial data structures, such as polyhedral surfaces and planar maps, tailored for program libraries in computational geometry. Design issues considered are flexibility, time and space efficiency, and easeofuse. We focus on topological aspects of polyhedral surfaces and evaluate edgebased representations with respect to our design goals. A design for polyhedral surfaces in a halfedge data structure is developed following the generic programming paradigm known from the Standard Template Library STL for C++. Connections are shown to planar maps and facebased structures. Key words: Library design; Generic programming; Combinatorial data structure; Polyhedral surface; Halfedge data structure 1 Introduction Combinatorial structures, such as planar maps, are fundamental in computational geometry. In order to be useful in practice, a solid library for compu...
Converting bases with the Gröbner walk
 Journal of Symbolic Computation
, 1997
"... We present an algorithm which converts a given Gröbner basis of a polynomial ideal I to a Gröbner basis of I with respect to another term order. The conversion is done in several steps following a path in the Gröbner fan of I. Each conversion step is based on the computation of a Gröbner basis of a ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
We present an algorithm which converts a given Gröbner basis of a polynomial ideal I to a Gröbner basis of I with respect to another term order. The conversion is done in several steps following a path in the Gröbner fan of I. Each conversion step is based on the computation of a Gröbner basis of a toric degeneration of I. c ○ 1997 Academic Press Limited 1.
Interactive Boolean Operations for Conceptual Design of 3D Solids
, 1997
"... Interactive modeling of 3D solids is an important and difficult problem in computer graphics. The Constructive Solid Geometry (CSG) modeling scheme is highly attractive for interactive design, due to its support for hierarchical modeling and Boolean operations. Unfortunately, current algorithms for ..."
Abstract

Cited by 41 (1 self)
 Add to MetaCart
Interactive modeling of 3D solids is an important and difficult problem in computer graphics. The Constructive Solid Geometry (CSG) modeling scheme is highly attractive for interactive design, due to its support for hierarchical modeling and Boolean operations. Unfortunately, current algorithms for interactive display of CSG models require expensive specialpurpose hardware that is not easily available. In this paper we present a method for interactive display of CSG models using standard, widely available graphics hardware. The method enables the user to interactively modify the affine transformations associated with CSG subobjects. The application we focus upon is that of conceptual design, a stage in the design process in which rapid, interactive visualization of the model and highlevel design operations are of crucial importance, while the objects are relatively simple. The method converts the CSG graph to a novel Convex Differences Aggregate(CDA) representation. The CDA utili...
Approximate Boolean Operations on Freeform Solids
, 2001
"... In this paper we describe a method for computing approximate results of boolean operations (union, intersection, difference) applied to freeform solids bounded by multiresolution subdivision surfaces. ..."
Abstract

Cited by 41 (5 self)
 Add to MetaCart
In this paper we describe a method for computing approximate results of boolean operations (union, intersection, difference) applied to freeform solids bounded by multiresolution subdivision surfaces.
Matchmaker: Manifold BReps for nonmanifold rsets
 Proceedings of the ACM Symposium on Solid Modeling
, 1999
"... Many solid modeling construction techniques produce nonmanifold rsets (solids). With each nonmanifold model N we can associate a family of manifold solid models that are infinitely close to N in the geometric sense. For polyhedral solids, each nonmanifold edge of N with 2k incident faces will be ..."
Abstract

Cited by 40 (20 self)
 Add to MetaCart
Many solid modeling construction techniques produce nonmanifold rsets (solids). With each nonmanifold model N we can associate a family of manifold solid models that are infinitely close to N in the geometric sense. For polyhedral solids, each nonmanifold edge of N with 2k incident faces will be replicated k times in any manifold model M of that family. Furthermore, some nonmanifold vertices of N must also be replicated in M, possibly several times. M can be obtained by defining, in N, a single adjacent face TA(E,F) for each pair (E,F) that combines an edge E and an incident face F. The adjacency relation satisfies TA(E,TA(E,F))=F. The choice of the map A defines which vertices of N must be replicated in M and how many times. The resulting manifold representation of a nonmanifold solid may be encoded using simpler and more compact datastructures, especially for triangulated model, and leads to simpler and more efficient algorithms, when it is used instead of a nonmanifold repre...
Swept Volumes: Foundations, Perspectives, and Applications
"... Several fundamental developments in the past decade have led to a better understanding of swept volumes. While the underlying formulation for characterizing the volume generated as a result of the motion of a geometric entity in space has appeared in various fields under different names, this review ..."
Abstract

Cited by 37 (2 self)
 Add to MetaCart
Several fundamental developments in the past decade have led to a better understanding of swept volumes. While the underlying formulation for characterizing the volume generated as a result of the motion of a geometric entity in space has appeared in various fields under different names, this review seeks to unify the terminology and demonstrate the applicability to different fields. This paper reviews the various formulations that have appeared, outlines the basic research involved, and highlights the implications on research in engineering, mathematics, and computer science. The applicability of this seemingly simple formulation to the fields of solid modeling, robotics, manufacturing automation, and visualization is demonstrated through results reported by the authors, each in their own field.