Results 1  10
of
112
Algorithms in Discrete Convex Analysis
 Math. Programming
, 2000
"... this paper is to describe the f#eA damental results on M and Lconvex f#24L2A+ with special emphasis on algorithmic aspects. ..."
Abstract

Cited by 161 (34 self)
 Add to MetaCart
(Show Context)
this paper is to describe the f#eA damental results on M and Lconvex f#24L2A+ with special emphasis on algorithmic aspects.
Maximizing nonmonotone submodular functions
 In Proceedings of 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS
, 2007
"... Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular fu ..."
Abstract

Cited by 145 (17 self)
 Add to MetaCart
Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular functions is NPhard. In this paper, we design the first constantfactor approximation algorithms for maximizing nonnegative submodular functions. In particular, we give a deterministic local search 1 2approximation and a randomizedapproximation algo
Optimal Approximation for the Submodular Welfare Problem in the value oracle model
 STOC'08
, 2008
"... In the Submodular Welfare Problem, m items are to be distributed among n players with utility functions wi: 2 [m] → R+. The utility functions are assumed to be monotone and submodular. Assuming that player i receives a set of items Si, we wish to maximize the total utility Pn i=1 wi(Si). In this pap ..."
Abstract

Cited by 122 (11 self)
 Add to MetaCart
In the Submodular Welfare Problem, m items are to be distributed among n players with utility functions wi: 2 [m] → R+. The utility functions are assumed to be monotone and submodular. Assuming that player i receives a set of items Si, we wish to maximize the total utility Pn i=1 wi(Si). In this paper, we work in the value oracle model where the only access to the utility functions is through a black box returning wi(S) for a given set S. Submodular Welfare is in fact a special case of the more general problem of submodular maximization subject to a matroid constraint: max{f(S) : S ∈ I}, where f is monotone submodular and I is the collection of independent sets in some matroid. For both problems, a greedy algorithm is known to yield a 1/2approximation [21, 16]. In special cases where the matroid is uniform (I = {S: S  ≤ k}) [20] or the submodular function is of a special type [4, 2], a (1 − 1/e)approximation has been achieved and this is optimal for these problems in the value oracle model [22, 6, 15]. A (1 − 1/e)approximation for the general Submodular Welfare Problem has been known only in a stronger demand oracle model [4], where in fact 1 − 1/e can be improved [9]. In this paper, we develop a randomized continuous greedy algorithm which achieves a (1 − 1/e)approximation for the Submodular Welfare Problem in the value oracle model. We also show that the special case of n equal players is approximation resistant, in the sense that the optimal (1 − 1/e)approximation is achieved by a uniformly random solution. Using the pipage rounding technique [1, 2], we obtain a (1 − 1/e)approximation for submodular maximization subject to any matroid constraint. The continuous greedy algorithm has a potential of wider applicability, which we demonstrate on the examples of the Generalized Assignment Problem and the AdWords Assignment Problem.
Maximizing a Monotone Submodular Function subject to a Matroid Constraint
, 2008
"... Let f: 2 X → R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2 approximation [14] for this problem. For certain special cases, e.g. max S≤k f(S), the greedy algorithm yields a (1 − 1/e)app ..."
Abstract

Cited by 63 (0 self)
 Add to MetaCart
Let f: 2 X → R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2 approximation [14] for this problem. For certain special cases, e.g. max S≤k f(S), the greedy algorithm yields a (1 − 1/e)approximation. It is known that this is optimal both in the value oracle model (where the only access to f is through a black box returning f(S) for a given set S) [28], and also for explicitly posed instances assuming P � = NP [10]. In this paper, we provide a randomized (1 − 1/e)approximation for any monotone submodular function and an arbitrary matroid. The algorithm works in the value oracle model. Our main tools are a variant of the pipage rounding technique of Ageev and Sviridenko [1], and a continuous greedy process that might be of independent interest. As a special case, our algorithm implies an optimal approximation for the Submodular Welfare Problem in the value oracle model [32]. As a second application, we show that the Generalized Assignment Problem (GAP) is also a special case; although the reduction requires X  to be exponential in the original problem size, we are able to achieve a (1 − 1/e − o(1))approximation for GAP, simplifying previously known algorithms. Additionally, the reduction enables us to obtain approximation algorithms for variants of GAP with more general constraints.
Efficient Informative Sensing using Multiple Robots
"... The need for efficient monitoring of spatiotemporal dynamics in large environmental applications, such as the water quality monitoring in rivers and lakes, motivates the use of robotic sensors in order to achieve sufficient spatial coverage. Typically, these robots have bounded resources, such as l ..."
Abstract

Cited by 53 (5 self)
 Add to MetaCart
(Show Context)
The need for efficient monitoring of spatiotemporal dynamics in large environmental applications, such as the water quality monitoring in rivers and lakes, motivates the use of robotic sensors in order to achieve sufficient spatial coverage. Typically, these robots have bounded resources, such as limited battery or limited amounts of time to obtain measurements. Thus, careful coordination of their paths is required in order to maximize the amount of information collected, while respecting the resource constraints. In this paper, we present an efficient approach for nearoptimally solving the NPhard optimization problem of planning such informative paths. In particular, we first develop eSIP (efficient Singlerobot Informative Path planning), an approximation algorithm for optimizing the path of a single robot. Hereby, we use a Gaussian Process to model the underlying phenomenon, and use the mutual information between the visited locations and remainder of the space to quantify the amount of information collected. We prove that the mutual information collected using paths obtained by using eSIP is close to the information obtained by an optimal solution. We then provide a general technique, sequential allocation, which can be used to extend any single robot planning algorithm, such as eSIP, for the multirobot problem. This procedure approximately generalizes any guarantees for the singlerobot problem to the multirobot case. We extensively evaluate the effectiveness of our approach on several experiments performed infield for two important environmental sensing applications, lake and river monitoring, and simulation experiments performed using several real world sensor network data sets. 1.
Maximizing Submodular Set Functions Subject to Multiple Linear Constraints
, 2009
"... The concept of submodularity plays a vital role in combinatorial optimization. In particular, many important optimization problems can be cast as submodular maximization problems, including maximum coverage, maximum facility location and max cut in directed/undirected graphs. In this paper we presen ..."
Abstract

Cited by 51 (1 self)
 Add to MetaCart
(Show Context)
The concept of submodularity plays a vital role in combinatorial optimization. In particular, many important optimization problems can be cast as submodular maximization problems, including maximum coverage, maximum facility location and max cut in directed/undirected graphs. In this paper we present the first known approximation algorithms for the problem of maximizing a nondecreasing submodular set function subject to multiple linear constraints. Given a ddimensional budget vector ¯ L, for some d ≥ 1, and an oracle for a nondecreasing submodular set function f over a universe U, where each element e ∈ U is associated with a ddimensional cost vector, we seek a subset of elements S ⊆ U whose total cost is at most ¯ L, such that f(S) is maximized. We develop a framework for maximizing submodular functions subject to d linear constraints that yields a (1 − ε)(1 − e−1)approximation to the optimum for any ε> 0, where d> 1 is some constant. Our study is motivated by a variant of the classical maximum coverage problem that we call maximum coverage with multiple packing constraints. We use our framework to obtain the same approximation ratio for this problem. To the best of our knowledge, this is the first time the theoretical bound of 1 − e−1 is (almost) matched for both of these problems.
Symmetry and approximability of submodular maximization problems
"... A number of recent results on optimization problems involving submodular functions have made use of the ”multilinear relaxation” of the problem [3], [8], [24], [14], [13]. We present a general approach to deriving inapproximability results in the value oracle model, based on the notion of ”symmetry ..."
Abstract

Cited by 47 (3 self)
 Add to MetaCart
A number of recent results on optimization problems involving submodular functions have made use of the ”multilinear relaxation” of the problem [3], [8], [24], [14], [13]. We present a general approach to deriving inapproximability results in the value oracle model, based on the notion of ”symmetry gap”. Our main result is that for any fixed instance that exhibits a certain ”symmetry gap ” in its multilinear relaxation, there is a naturally related class of instances for which a better approximation factor than the symmetry gap would require exponentially many oracle queries. This unifies several known hardness results for submodular maximization, e.g. the optimality of (1 − 1/e)approximation for monotone submodular maximization under a cardinality constraint [20], [7], and the impossibility of ( 1 +ɛ)approximation for uncon2 strained (nonmonotone) submodular maximization [8]. It follows from our result that ( 1 + ɛ)approximation is also impossible for 2 nonmonotone submodular maximization subject to a (nontrivial) matroid constraint. On the algorithmic side, we present a 0.309approximation for this problem, improving the previously known factor of 1 − o(1) [14]. 4 As another application, we consider the problem of maximizing a nonmonotone submodular function over the bases of a matroid. A ( 1 − o(1))approximation has been developed for this problem, 6 assuming that the matroid contains two disjoint bases [14]. We show that the best approximation one can achieve is indeed related to packings of bases in the matroid. Specifically, for any k ≥ 2, there is a class of matroids of fractional base packing number k k−1 ν = , such that any algorithm achieving a better than (1 − 1)approximation for this class would require exponentially many
Submodular Maximization Over Multiple Matroids via Generalized Exchange Properties
, 2009
"... Submodularfunction maximization is a central problem in combinatorial optimization, generalizing many important NPhard problems including Max Cut in digraphs, graphs and hypergraphs, certain constraint satisfaction problems, maximumentropy sampling, and maximum facilitylocation problems. Our mai ..."
Abstract

Cited by 45 (6 self)
 Add to MetaCart
(Show Context)
Submodularfunction maximization is a central problem in combinatorial optimization, generalizing many important NPhard problems including Max Cut in digraphs, graphs and hypergraphs, certain constraint satisfaction problems, maximumentropy sampling, and maximum facilitylocation problems. Our main result is that for any k ≥ 2 and any ε> 0, there is a natural localsearch algorithm which has approximation guarantee of 1/(k + ε) for the problem of maximizing a monotone submodular function subject to k matroid constraints. This improves a 1/(k + 1)approximation of Nemhauser, Wolsey and Fisher, obtained more than 30 years ago. Also, our analysis can be applied to the problem of maximizing a linear objective function and even a general nonmonotone submodular function subject to k matroid constraints. We show that in these cases the approximation guarantees of our algorithms are 1/(k − 1 + ε) and 1/(k + 1 + 1/k + ε), respectively.
Submodular function maximization via the multilinear relaxation and contention resolution schemes
 IN ACM SYMPOSIUM ON THEORY OF COMPUTING
, 2011
"... We consider the problem of maximizing a nonnegative submodular set function f: 2 N → R+ over a ground set N subject to a variety of packing type constraints including (multiple) matroid constraints, knapsack constraints, and their intersections. In this paper we develop a general framework that all ..."
Abstract

Cited by 40 (2 self)
 Add to MetaCart
We consider the problem of maximizing a nonnegative submodular set function f: 2 N → R+ over a ground set N subject to a variety of packing type constraints including (multiple) matroid constraints, knapsack constraints, and their intersections. In this paper we develop a general framework that allows us to derive a number of new results, in particular when f may be a nonmonotone function. Our algorithms are based on (approximately) solving the multilinear extension F of f [5] over a polytope P that represents the constraints, and then effectively rounding the fractional solution. Although this approach has been used quite successfully in some settings [6, 22, 24, 13, 3], it has been limited in some important ways. We overcome these limitations as follows. First, we give constant factor approximation algorithms to maximize
Submodular Approximation: Samplingbased Algorithms and Lower Bounds
, 2008
"... We introduce several generalizations of classical computer science problems obtained by replacing simpler objective functions with general submodular functions. The new problems include submodular load balancing, which generalizes load balancing or minimummakespan scheduling, submodular sparsest cu ..."
Abstract

Cited by 38 (0 self)
 Add to MetaCart
(Show Context)
We introduce several generalizations of classical computer science problems obtained by replacing simpler objective functions with general submodular functions. The new problems include submodular load balancing, which generalizes load balancing or minimummakespan scheduling, submodular sparsest cut and submodular balanced cut, which generalize their respective graph cut problems, as well as submodular function minimization with a cardinality lower bound. We establish upper and lower bounds for the approximability of these problems with a polynomial number of queries to a functionvalue oracle. The approximation guarantees for most of our algorithms are of the order of √ n/lnn. We show that this is the inherent difficulty of the problems by proving matching lower bounds. We also give an improved lower bound for the problem of approximately learning a monotone submodular function. In addition, we present an algorithm for approximately learning submodular functions with special structure, whose guarantee is close to the lower bound. Although quite restrictive, the class of functions with this structure includes the ones that are used for lower bounds both by us and in previous work. This demonstrates that if there are significantly stronger lower bounds for this problem, they rely on more general submodular functions.